8 resultados para pacs: human aspacts of it
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Resumo:
Epigenetic variability is a new mechanism for the study of human microevolution, because it creates both phenotypic diversity within an individual and within population. This mechanism constitutes an important reservoir for adaptation in response to new stimuli and recent studies have demonstrated that selective pressures shape not only the genetic code but also DNA methylation profiles. The aim of this thesis is the study of the role of DNA methylation changes in human adaptive processes, considering the Italian peninsula and macro-geographical areas. A whole-genome analysis of DNA methylation profile across the Italian penisula identified some genes whose methylation levels differ between individuals of different Italian districts (South, Centre and North of Italy). These genes are involved in nitrogen compound metabolism and genes involved in pathogens response. Considering individuals with different macro-geographical origins (individuals of Asians, European and African ancestry) more significant DMRs (differentially methylated regions) were identified and are located in genes involved in glucoronidation, in immune response as well as in cell comunication processes. A "profile" of each ancestry (African, Asian and European) was described. Moreover a deepen analysis of three candidate genes (KRTCAP3, MAD1L and BRSK2) in a cohort of individuals of different countries (Morocco, Nigeria, China and Philippines) living in Bologna, was performed in order to explore genetic and epigenetic diversity. Moreover this thesis have paved the way for the application of DNA methylation for the study of hystorical remains and in particular for the age-estimation of individuals starting from biological samples (such as teeth or blood). Noteworthy, a mathematical model that considered methylation values of DNA extracted from cementum and pulp of living individuals can estimate chronological age with high accuracy (median absolute difference between age estimated from DNA methylation and chronological age was 1.2 years).
Resumo:
This thesis is focused on the metabolomic study of human cancer tissues by ex vivo High Resolution-Magic Angle Spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy. This new technique allows for the acquisition of spectra directly on intact tissues (biopsy or surgery), and it has become very important for integrated metabonomics studies. The objective is to identify metabolites that can be used as markers for the discrimination of the different types of cancer, for the grading, and for the assessment of the evolution of the tumour. Furthermore, an attempt to recognize metabolites, that although involved in the metabolism of tumoral tissues in low concentration, can be important modulators of neoplastic proliferation, was performed. In addition, NMR data was integrated with statistical techniques in order to obtain semi-quantitative information about the metabolite markers. In the case of gliomas, the NMR study was correlated with gene expression of neoplastic tissues. Chapter 1 begins with a general description of a new “omics” study, the metabolomics. The study of metabolism can contribute significantly to biomedical research and, ultimately, to clinical medical practice. This rapidly developing discipline involves the study of the metabolome: the total repertoire of small molecules present in cells, tissues, organs, and biological fluids. Metabolomic approaches are becoming increasingly popular in disease diagnosis and will play an important role on improving our understanding of cancer mechanism. Chapter 2 addresses in more detail the basis of NMR Spectroscopy, presenting the new HR-MAS NMR tool, that is gaining importance in the examination of tumour tissues, and in the assessment of tumour grade. Some advanced chemometric methods were used in an attempt to enhance the interpretation and quantitative information of the HR-MAS NMR data are and presented in chapter 3. Chemometric methods seem to have a high potential in the study of human diseases, as it permits the extraction of new and relevant information from spectroscopic data, allowing a better interpretation of the results. Chapter 4 reports results obtained from HR-MAS NMR analyses performed on different brain tumours: medulloblastoma, meningioms and gliomas. The medulloblastoma study is a case report of primitive neuroectodermal tumor (PNET) localised in the cerebellar region by Magnetic Resonance Imaging (MRI) in a 3-year-old child. In vivo single voxel 1H MRS shows high specificity in detecting the main metabolic alterations in the primitive cerebellar lesion; which consist of very high amounts of the choline-containing compounds and of very low levels of creatine derivatives and N-acetylaspartate. Ex vivo HR-MAS NMR, performed at 9.4 Tesla on the neoplastic specimen collected during surgery, allows the unambiguous identification of several metabolites giving a more in-depth evaluation of the metabolic pattern of the lesion. The ex vivo HR-MAS NMR spectra show higher detail than that obtained in vivo. In addition, the spectroscopic data appear to correlate with some morphological features of the medulloblastoma. The present study shows that ex vivo HR-MAS 1H NMR is able to strongly improve the clinical possibility of in vivo MRS and can be used in conjunction with in vivo spectroscopy for clinical purposes. Three histological subtypes of meningiomas (meningothelial, fibrous and oncocytic) were analysed both by in vivo and ex vivo MRS experiments. The ex vivo HR-MAS investigations are very helpful for the assignment of the in vivo resonances of human meningiomas and for the validation of the quantification procedure of in vivo MR spectra. By using one- and two dimensional experiments, several metabolites in different histological subtypes of meningiomas, were identified. The spectroscopic data confirmed the presence of the typical metabolites of these benign neoplasms and, at the same time, that meningomas with different morphological characteristics have different metabolic profiles, particularly regarding macromolecules and lipids. The profile of total choline metabolites (tCho) and the expression of the Kennedy pathway genes in biopsies of human gliomas were also investigated using HR-MAS NMR, and microfluidic genomic cards. 1H HR-MAS spectra, allowed the resolution and relative quantification by LCModel of the resonances from choline (Cho), phosphorylcholine (PC) and glycerolphorylcholine (GPC), the three main components of the combined tCho peak observed in gliomas by in vivo 1H MRS spectroscopy. All glioma biopsies depicted an increase in tCho as calculated from the addition of Cho, PC and GPC HR-MAS resonances. However, the increase was constantly derived from augmented GPC in low grade NMR gliomas or increased PC content in the high grade gliomas, respectively. This circumstance allowed the unambiguous discrimination of high and low grade gliomas by 1H HR-MAS, which could not be achieved by calculating the tCho/Cr ratio commonly used by in vivo 1H MR spectroscopy. The expression of the genes involved in choline metabolism was investigated in the same biopsies. The present findings offer a convenient procedure to classify accurately glioma grade using 1H HR-MAS, providing in addition the genetic background for the alterations of choline metabolism observed in high and low gliomas grade. Chapter 5 reports the study on human gastrointestinal tract (stomach and colon) neoplasms. The human healthy gastric mucosa, and the characteristics of the biochemical profile of human gastric adenocarcinoma in comparison with that of healthy gastric mucosa were analyzed using ex vivo HR-MAS NMR. Healthy human mucosa is mainly characterized by the presence of small metabolites (more than 50 identified) and macromolecules. The adenocarcinoma spectra were dominated by the presence of signals due to triglycerides, that are usually very low in healthy gastric mucosa. The use of spin-echo experiments enable us to detect some metabolites in the unhealthy tissues and to determine their variation with respect to the healthy ones. Then, the ex vivo HR-MAS NMR analysis was applied to human gastric tissue, to obtain information on the molecular steps involved in the gastric carcinogenesis. A microscopic investigation was also carried out in order to identify and locate the lipids in the cellular and extra-cellular environments. Correlation of the morphological changes detected by transmission (TEM) and scanning (SEM) electron microscopy, with the metabolic profile of gastric mucosa in healthy, gastric atrophy autoimmune diseases (AAG), Helicobacter pylori-related gastritis and adenocarcinoma subjects, were obtained. These ultrastructural studies of AAG and gastric adenocarcinoma revealed lipid intra- and extra-cellularly accumulation associated with a severe prenecrotic hypoxia and mitochondrial degeneration. A deep insight into the metabolic profile of human healthy and neoplastic colon tissues was gained using ex vivo HR-MAS NMR spectroscopy in combination with multivariate methods: Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA). The NMR spectra of healthy tissues highlight different metabolic profiles with respect to those of neoplastic and microscopically normal colon specimens (these last obtained at least 15 cm far from the adenocarcinoma). Furthermore, metabolic variations are detected not only for neoplastic tissues with different histological diagnosis, but also for those classified identical by histological analysis. These findings suggest that the same subclass of colon carcinoma is characterized, at a certain degree, by metabolic heterogeneity. The statistical multivariate approach applied to the NMR data is crucial in order to find metabolic markers of the neoplastic state of colon tissues, and to correctly classify the samples. Significant different levels of choline containing compounds, taurine and myoinositol, were observed. Chapter 6 deals with the metabolic profile of normal and tumoral renal human tissues obtained by ex vivo HR-MAS NMR. The spectra of human normal cortex and medulla show the presence of differently distributed osmolytes as markers of physiological renal condition. The marked decrease or disappearance of these metabolites and the high lipid content (triglycerides and cholesteryl esters) is typical of clear cell renal carcinoma (RCC), while papillary RCC is characterized by the absence of lipids and very high amounts of taurine. This research is a contribution to the biochemical classification of renal neoplastic pathologies, especially for RCCs, which can be evaluated by in vivo MRS for clinical purposes. Moreover, these data help to gain a better knowledge of the molecular processes envolved in the onset of renal carcinogenesis.
Resumo:
Sigma (σ) receptors are well established as a non-opioid, non-phencyclidine, and haloperidol-sensitive receptor family with its own binding profile and a characteristic distribution in the central nervous system (CNS) as well as in endocrine, immune, and some peripheral tissues. Two σ receptors subtypes, termed σ1 and σ2, have been pharmacologically characterized, but, to date, only the σ1 has also been cloned. Activation of σ1 receptors alter several neurotransmitter systems and dopamine (DA) neurotrasmission has been often shown to constitute an important target of σ receptors in different experimental models; however the exact role of σ1 receptor in dopaminergic neurotransmission remains unclear. The DA transporter (DAT) modulates the spatial and temporal aspects of dopaminergic synaptic transmission and interprer the primary mechanism by wich dopaminergic neurons terminate the signal transmission. For this reason present studies have been focused in understanding whether, in cell models, the human subtype of σ1 (hσ1) receptor is able to directly modulate the human DA transporter (hDAT). In the first part of this thesis, HEK-293 and SH-SY5Y cells were permanently transfected with the hσ1 receptor. Subsequently, they were transfected with another plasmid for transiently expressing the hDAT. The hDAT activity was estimated using the described [3H]DA uptake assay and the effects of σ ligands were evaluated by measuring the uptaken [3H]DA after treating the cells with known σ agonists and antagonists. Results illustrated in this thesis demonstrate that activation of overexpressed hσ1 receptors by (+)-pentazocine, the σ1 agonist prototype, determines an increase of 40% of the extracellular [3H]DA uptake, in comparison to non-treated controls and the σ1 antagonists BD-1047 and NE-100 prevent the positive effect of (+)-pentazocine on DA reuptake DA is likely to be considered a neurotoxic molecule. In fact, when levels of intracellular DA abnormally invrease, vescicles can’t sequester the DA which is metabolized by MAO (A and B) and COMT with consequent overproduction of oxygen reactive species and toxic catabolites. Stress induced by these molecules leads cells to death. Thus, for the second part of this thesis, experiments have been performed in order to investigate functional alterations caused by the (+)-pentazocine-mediated increase of DA uptake; particularly it has been investigated if the increase of intracellular [DA] could affect cells viability. Results obtained from this study demonstrate that (+)-pentazocine alone increases DA cell toxicity in a concentration-dependent manner only in cells co-expressing hσ1 and hDAT and σ1 antagonists are able to revert the (+)-pentazocine-induced increase of cell susceptibility to DA toxicity. In the last part of this thesis, the functional cross-talking between hσ1 receptor and hDAT has been further investigated using confocal microscopy. From the acquired data it could be suggested that, following exposure to (+)-pentazocine, the hσ1 receptors massively translocate towards the plasma membrane and colocalize with the hDATs. However, any physical interaction between the two proteins remains to be proved. In conclusion, the presented study shows for the first time that, in cell models, hσ1 receptors directly modulate the hDAT activity. Facilitation of DA uptake induced by (+)-pentazocine is reflected on the increased cell susceptibility to DA toxicity; these effects are prevented by σ1 selective antagonists. Since numerous compounds, including several drugs of abuse, bind to σ1 receptors and activating them could facilitate the damage of dopaminergic neurons, the reported protective effect showed by σ1 antagonists would represent the pharmacological basis to test these compounds in experimental models of dopaminergic neurodegenerative diseases (i.e. Parkinson’s Disease).
Resumo:
Atmospheric CO2 concentration ([CO2]) has increased over the last 250 years, mainly due to human activities. Of total anthropogenic emissions, almost 31% has been sequestered by the terrestrial biosphere. A considerable contribution to this sink comes from temperate and boreal forest ecosystems of the northern hemisphere, which contain a large amount of carbon (C) stored as biomass and soil organic matter. Several potential drivers for this forest C sequestration have been proposed, including increasing atmospheric [CO2], temperature, nitrogen (N) deposition and changes in management practices. However, it is not known which of these drivers are most important. The overall aim of this thesis project was to develop a simple ecosystem model which explicitly incorporates our best understanding of the mechanisms by which these drivers affect forest C storage, and to use this model to investigate the sensitivity of the forest ecosystem to these drivers. I firstly developed a version of the Generic Decomposition and Yield (G’DAY) model to explicitly investigate the mechanisms leading to forest C sequestration following N deposition. Specifically, I modified the G’DAY model to include advances in understanding of C allocation, canopy N uptake, and leaf trait relationships. I also incorporated a simple forest management practice subroutine. Secondly, I investigated the effect of CO2 fertilization on forest productivity with relation to the soil N availability feedback. I modified the model to allow it to simulate short-term responses of deciduous forests to environmental drivers, and applied it to data from a large-scale forest Free-Air CO2 Enrichment (FACE) experiment. Finally, I used the model to investigate the combined effects of recent observed changes in atmospheric [CO2], N deposition, and climate on a European forest stand. The model developed in my thesis project was an effective tool for analysis of effects of environmental drivers on forest ecosystem C storage. Key results from model simulations include: (i) N availability has a major role in forest ecosystem C sequestration; (ii) atmospheric N deposition is an important driver of N availability on short and long time-scales; (iii) rising temperature increases C storage by enhancing soil N availability and (iv) increasing [CO2] significantly affects forest growth and C storage only when N availability is not limiting.
Resumo:
Iodine is an essential microelement for human health because it is a constituent of the thyroid hormones that regulate growth and development of the organism. Iodine Deficiency Disorders (IDDs) are believed to be one of the commonest preventable human health problems in the world today, according to the World Health Organization: that diseases include endemic goiter, cretinism and fetal abnormalities, among others, and they are caused by lack of iodine in the diet, that is the main source of iodine. Since iodine intake from food is not enough respect to human needs, this can be remedied through dietary diversification, mineral supplementation, food fortification, or increasing the concentration and/or bioavailability of mineral elements in the edible portions of crops through agricultural intervention or genetic selection (biofortification). The introduction of iodized salt is a strategy widely used and accepted to eradicate iodine deficiency, because it is an inexpensive source of stable iodine. Since the intake of salt, though iodized, must still be limited according to the risk of cardiovascular disease, so the increase of iodine content in plants for the production of functional foods is representing a field of study of particular interest and a potential market. In Italy potatoes enriched with iodine are produced by a patented procedure of agronomic biofortification for the fresh market since several years, furthermore they are recently accepted and recommended by Italian Thyroid Association, as an alternative source of iodine. Researches performed during the PhD course intended to characterize this innovative vegetables products, focusing the attention on different aspects, such as chemistry, agriculture, and quality of fresh and fried potatoes. For this purpose, lipid fraction of raw material was firstly investigated, in order to assess whether the presence of iodine in plant metabolism can affect fatty acid or sterol biosynthesis, according to the hypothesis that iodine can be bounded to polyunsaturated fatty acids of cell membranes, protecting them from peroxydation; phytosterols of plant sterol are also studied because their importance in reducing serum cholesterol, especially in potato plant sterols are also involved in synthesis of glycoalkaloid, a family of steroidal toxic secondary metabolites present in plants of the Solanaceae family. To achieve this goal chromatographic analytical techniques were employed to identify and quantify fatty acids and sterols profile of common and iodine enriched row potatoes. Another aim of the project was to evaluate the effects of frying on the quality of iodine-enriched and common potatoes. Since iodine-enriched potatoes are nowadays produced only for the fresh market, preliminary trials of cultivation under controlled environment were carried out to verify if potato varieties suitable for processing were able to absorb and accumulate iodine in the tuber. In a successive phase, these varieties were grown in the field, to evaluate their potential productivity and quality at harvest and after storage. The best potato variety to be destined for processing purposes, was finally subjected to repeated frying cycles; the effects of lipid oxidation on the composition and quality of both potatoes and frying oil bath were evaluated by chromatographic and spectrophotometric analytical techniques. Special attention were paid on volatile compounds of fried potatoes.
Resumo:
In the last 20-30 years, the implementation of new technologies from the research centres to the food industry process was very fast. The infrared thermography is a tool used in many fields, including agriculture and food science technology, because of it's important qualities like non-destructive method, it is fast, it is accurate, it is repeatable and economical. Almost all the industrial food processors have to use the thermal process to obtain an optimal product respecting the quality and safety standards. The control of temperature of food products during the production, transportation, storage and sales is an essential process in the food industry network. This tool can minimize the human error during the control of heat operation, and reduce the costs with personal. In this thesis the application of infrared thermography (IRT) was studies for different products that need a thermal process during the food processing. The background of thermography was presented, and also some of its applications in food industry, with the benefits and limits of applicability. The measurement of the temperature of the egg shell during the heat treatment in natural convection and with hot-air treatment was compared with the calculated temperatures obtained by a simplified finite element model made in the past. The complete process shown a good results between calculated and observed temperatures and we can say that this technique can be useful to control the heat treatments for decontamination of egg using the infrared thermography. Other important application of IRT was to determine the evolution of emissivity of potato raw during the freezing process and the control non-destructive control of this process. We can conclude that the IRT can represent a real option for the control of thermal process from the food industry, but more researches on various products are necessary.
Resumo:
This PhD dissertation presents a profound study of the vulnerability of buildings and non-structural elements stemming from the investigation of the Mw 5.2 Lorca 2011 earthquake; which constitutes one of the most significant earthquakes in Spain. It left nine fatalities due to falling debris from reinforced concrete buildings, 394 injured and material damage valued at 800 million euros. Within this framework, the most relevant initiatives concerning the vulnerability of buildings and the exposure of Lorca are studied. This work revealed two lines of research: the elaboration of a rational method to determine the adequacy of a specific fragility curve for the particular seismic risk study of a region; and the relevance of researching the seismic performance of non-structural elements. As a consequence, firstly, a method to assess and select fragility curves for seismic risk studies from the catalogue of those available in the literature is elaborated and calibrated by means of a case study. The said methodology is based on a multidimensional index and provides a ranking that classifies the curves in terms of adequacy. Its results for the case of Lorca led to the elaboration of new fragility curves for unreinforced masonry buildings. Moreover, a simplified method to account for the unpredictable directionality of the seism in the creation of fragility curves is contributed. Secondly, the characterisation of the seismic capacity and demand of the non-structural elements that caused most of the human losses is studied. Concerning the capacity, an analytical approach derived from theoretical considerations to characterise the complete out-of-plane seismic response curve of unreinforced masonry cantilever walls is provided; as well as a simplified and more practical trilinear version of it. Concerning the demand, several methods for characterising the Floor Response Spectra of reinforced concrete buildings are tested through case studies.