4 resultados para oxidizing species generation
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Oxidative stress is considered to be of major relevance for a variety of pathological processes. Thus, it is valuable to identify compounds, which might act as antioxidants, i.e. compounds that antagonize the deleterious action of reactive oxygen species (ROS) on biomolecules. The mode of action of these compounds could be either to scavenge ROS directly or to trigger protective mechanisms inside the cell, thereby resulting in improved defense against ROS. Sulforaphane (SF) (1-isothiocyanato-(4R)-(methylsulfinyl)butane) is a naturally occurring cancer chemopreventive agent found as a precursor glucosinolate in Cruciferous vegetables like broccoli. Although SF is not a direct-acting antioxidant, there is substantial evidence that SF acts indirectly to increase the antioxidant capacity of animal cells and their abilities to cope with oxidative stress. Induction of phase 2 enzymes is one means by which SF enhances the cellular antioxidant capacity. Enzymes induced by SF include Glutathione S-transferases (GST) and NAD[P]H:quinone oxidoreductase (NQO1) which can function as protectors against oxidative stress. To protect themselves from oxidative stress, cells are equipped with reducing buffer systems including the GSH and thioredoxin (Trx) reductase. GSH is an important tripeptide thiol which in addition to being the substrate for GSTs maintains the cellular oxidation– reduction balance and protects cells against free radical species. Aim of the first part of this thesis was to investigate the ability of SF to induce the expression and the activity of different phase 2 and antioxidant enzymes (such as GST, GR, GPx, NQO1, TR, SOD, CAT) in an in vitro model of rat cardiomyocytes, and also to define if SF treatment supprts cells in counteracting oxidative stress induced by H2O2 It is well known that acute exhaustive exercise causes significant reactive oxygen species generation that results in oxidative stress, which can induce negative effects on health and well being. In fact, increased oxidative stress and biomarkers (e.g., protein carbonyls, MDA, and 8- hydroxyguanosine) as well as muscle damage biomarkers (e.g. plasmatic Creatine cinase and Lactate dehydrogenase) have been observed after supramaximal sprint exercises, exhaustive longdistance cycling or running as well as resistance-type exercises, both in trained and untrained humans. Markers of oxidative stress also increase in rodents following exhaustive exercise. Moreover, antioxidant enzyme activities and expressions of antioxidant enzymes are known to increase in response to exhaustive exercise in both animal and human tissues. Aim of this project was to evaluate the effect of SF supplementation in counteracting oxidative stress induced by physical activity through its ability to induce phase 2, and antioxidant enzymes in rat muscle. The results show that SF is a nutraceutical compound able to induce the activity of different phase 2 and antioxidant enzymes in both cardiac muscle and skeletal muscle. Thanks to its actions SF is becoming a promising molecule able to prevent cardiovascular damages induced by oxidative stress and muscle damages induced by acute exhaustive exercise.
Resumo:
Evidence accumulated in the last ten years has demonstrated that a large proportion of the mitochondrial respiratory chain complexes in a variety of organisms is arranged in supramolecular assemblies called supercomplexes or respirasomes. Besides conferring a kinetic advantage (substrate channeling) and being required for the assembly and stability of Complex I, indirect considerations support the view that supercomplexes may also prevent excessive formation of reactive oxygen species (ROS) from the respiratory chain. Following this line of thought we have decided to directly investigate ROS production by Complex I under conditions in which the complex is arranged as a component of the supercomplex I1III2 or it is dissociated as an individual enzyme. The study has been addressed both in bovine heart mitochondrial membranes and in reconstituted proteoliposomes composed of complexes I and III in which the supramolecular organization of the respiratory assemblies is impaired by: (i) treatment either of bovine heart mitochondria or liposome-reconstituted supercomplex I-III with dodecyl maltoside; (ii) reconstitution of Complexes I and III at high phospholipids to protein ratio. The results of this investigation provide experimental evidence that the production of ROS is strongly increased in either model; supporting the view that disruption or prevention of the association between Complex I and Complex III by different means enhances the generation of superoxide from Complex I . This is the first demonstration that dissociation of the supercomplex I1III2 in the mitochondrial membrane is a cause of oxidative stress from Complex I. Previous work in our laboratory demonstrated that lipid peroxidation can dissociate the supramolecular assemblies; thus, here we confirm that preliminary conclusion that primary causes of oxidative stress may perpetuate reactive oxygen species (ROS) generation by a vicious circle involving supercomplex dissociation as a major determinant.
Resumo:
Results reported in this Thesis contribute to the comprehension of the complicated world of “redox biology”. ROS regulate signalling pathways both in physiological responses and in pathogenesis and progression of diseases. In cancer cells, the increase in ROS generation from metabolic abnormalities and oncogenic signalling may trigger a redox adaptation response, leading to an up-regulation of antioxidant capacity in order to maintain the ROS level below the toxic threshold. Thus, cancer cells would be more dependent on the antioxidant system and more vulnerable to further oxidative stress induced by exogenous ROS-generating agents or compounds that inhibit the antioxidant system. Results here reported indicate that the development of new drugs targeting specific Nox isoforms, responsible for intracellular ROS generation, or AQP isoforms, involved in the transport of extracellular H2O2 toward intracellular targets, might be an interesting novel anti-leukaemia strategy. Furthermore, also the use of CSD peptide, which simulate the VEGFR-2 segregation into caveolae in the inactive form, might be a strategy to stop the cellular response to VEGF signalling. As above stated, in the understanding of the redox biology, it is also important to identify and distinguish the molecular effectors that maintain normal biological and physiological responses, such as agents that stimulate our adaptation systems and elevate our endogenous antioxidant defences or other protective systems. Data here reported indicate that the nutraceutical compound sulforaphane and the Klotho protein are able to stimulate the HO-1 and Prx-1 expression, as well as the GSH levels, confirming their antioxidant and protective role. Finally, results here reported demonstrated that Stevia extracts are involved in insulin regulated glucose metabolism, suggesting that the use of these compounds goes beyond their sweetening power and may also offer therapeutic benefits hence improving the quality of life.
Resumo:
Ex-situ conservation and the in-situ conservation of natural habitats are the tools to conserve biodiversity. Habitats and ecosystems have been becoming altered by human activities and a growing number of species requires form of management to ensure their survival. Conservation queries become more complex and urgent. Developing scientifically based and innovative approaches to ex-situ conservation is necessary. Recent studies underline importance of gut microbiome in animal health with implications for animal conservation and management. Animal and human studies have demonstrated that environmental factors can impact gut microbiome composition. Within this scenario, the present work focused on species belonging to different taxa, reptiles and mammals: Aldabrachelys gigantea, the giant tortoise of the Seychelles islands and Indri indri, the greatest leaving lemur of Madagascar. The Seychelles giant tortoise is vulnerable species with declining population, whereas the indri is a critically endangered species that could reach the extinction within 25 years. Both need research to help them to survive. Tortoises live for very long time and to observe how they can afford the environmental changes is very difficult. Indris, instead, are able to survive only in a small area of the Madagascar forest, with a very strong link between the species’ survival and the environment. The obtained results underline importance of environmental factors, both in-situ and ex-situ, for species conservation. Microbiome could help the organisms to respond on a short timescale and cope with, environmental changes. However, species with long generation time might not be able to adapt to fast changes but bacteria with a short generation time can adapt on a shorter timescale allowing the host to cope with fluctuating environment. Gut microbiome plays an important role in an animal’s health and has the potential to improve the management of individuals under human care for conservation purposes.