6 resultados para oxidizing

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis reports the synthesis, and the chemical, structural and spectroscopic characterization of a series of new Rhodium and Au-Fe carbonyl clusters. Most new high-nuclearity rhodium carbonyl clusters have been obtained by redox condensation of preformed rhodium clusters reacting with a species in a different oxidation state generated in situ by mild oxidation. In particular the starting Rh carbonyl clusters is represented by the readily available [Rh7(CO)16]3- 9 compound. The oxidized species is generated in situ by reaction of the above with a stoichiometric defect of a mild oxidizing agents such as [M(H2O)x]n+ aquo complexes possessing different pKa’s and Mn+/M potentials. The experimental results are roughly in keeping with the conclusion that aquo complexes featuring E°(Mn+/M) < ca. -0.20 V do not lead to the formation of hetero-metallic Rh clusters, probably because of the inadequacy of their redox potentials relative to that of the [Rh7(CO)16]3-/2- redox couple. Only homometallic cluster s such as have been fairly selectively obtained. As a fallout of the above investigations, also a convenient and reproducible synthesis of the ill-characterized species [HnRh22(CO)35]8-n has been discovered. The ready availability of the above compound triggered both its complete spectroscopic and chemical characterization. because it is the only example of Rhodium carbonyl clusters with two interstitial metal atoms. The presence of several hydride atoms, firstly suggested by chemical evidences, has been implemented by ESI-MS and 1H-NMR, as well as new structural characterization of its tetra- and penta-anion. All these species display redox behaviour and behave as molecular capacitors. Their chemical reactivity with CO gives rise to a new series of Rh22 clusters containing a different number of carbonyl groups, which have been likewise fully characterized. Formation of hetero-metallic Rh clusters was only observed when using SnCl2H2O as oxidizing agent because. Quite all the Rh-Sn carbonyl clusters obtained have icosahedral geometry. The only previously reported example of an icosahedral Rh cluster with an interstitial atom is the [Rh12Sb(CO)27]3- trianion. They have very similar metal framework, as well as the same number of CO ligands and, consequently, cluster valence electrons (CVEs). .A first interesting aspect of the chemistry of the Rh-Sn system is that it also provides icosahedral clusters making exception to the cluster-borane analogy by showing electron counts from 166 to 171. As a result, the most electron-short species, namely [Rh12Sn(CO)25]4- displays redox propensity, even if disfavoured by the relatively high free negative charge of the starting anion and, moreover, behaves as a chloride scavenger. The presence of these bulky interstitial atoms results in the metal framework adopting structures different from a close-packed metal lattice and, above all, imparts a notable stability to the resulting cluster. An organometallic approach to a new kind of molecular ligand-stabilized gold nanoparticles, in which Fe(CO)x (x = 3,4) moieties protect and stabilize the gold kernel has also been undertaken. As a result, the new clusters [Au21{Fe(CO)4}10]5-, [Au22{Fe(CO)4}12]6-, Au28{Fe(CO)3}4{Fe(CO)4}10]8- and [Au34{Fe(CO)3}6{Fe(CO)4}8]6- have been isolated and characterized. As suggested by concepts of isolobal analogies, the Fe(CO)4 molecular fragment may display the same ligand capability of thiolates and go beyond. Indeed, the above clusters bring structural resemblance to the structurally characterized gold thiolates by showing Fe-Au-Fe, rather than S-Au-S, staple motives. Staple motives, the oxidation state of surface gold atoms and the energy of Au atomic orbitals are likely to concur in delaying the insulator-to-metal transition as the nuclearity of gold thiolates increases, relative to the more compact transition-metal carbonyl clusters. Finally, a few previously reported Au-Fe carbonyl clusters have been used as precursors in the preparation of supported gold catalysts. The catalysts obtained are active for toluene oxidation and the catalytic activity depends on the Fe/Au cluster loading over TiO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bifidobacteria constitute up to 3% of the total microbiota and represent one of the most important healthpromoting bacterial groups of the human intestinal microflora. The presence of Bifidobacterium in the human gastrointestinal tract has been directly related to several health-promoting activities; however, to date, no information about the specific mechanisms of interaction with the host is available. The first health-promoting activities studied in these job was the oxalate-degrading activity. Oxalic acid occurs extensively in nature and plays diverse roles, especially in pathological processes. Due to its highly oxidizing effects, hyper absorption or abnormal synthesis of oxalate can cause serious acute disorders in mammals and be lethal in extreme cases. Intestinal oxalate-degrading bacteria could therefore be pivotal in maintaining oxalate homeostasis, reducing the risk of kidney stone development. In this study, the oxalate-degrading activity of 14 bifidobacterial strains was measured by a capillary electrophoresis technique. The oxc gene, encoding oxalyl-CoA decarboxylase, a key enzyme in oxalate catabolism, was isolated by probing a genomic library of B. animalis subsp. lactis BI07, which was one of the most active strains in the preliminary screening. The genetic and transcriptional organization of oxc flanking regions was determined, unravelling the presence of other two independently transcribed open reading frames, potentially responsible for B. animalis subsp. lactis ability to degrade oxalate. Transcriptional analysis, using real-time quantitative reverse transcription PCR, revealed that these genes were highly induced in cells first adapted to subinhibitory concentrations of oxalate and then exposed to pH 4.5. Acidic conditions were also a prerequisite for a significant oxalate degradation rate, which dramatically increased in oxalate pre-adapted cells, as demonstrated in fermentation experiments with different pH-controlled batch cultures. These findings provide new insights in the characterization of oxalate-degrading probiotic bacteria and may support the use of B. animalis subsp. lactis as a promising adjunct for the prophylaxis and management of oxalate-related kidney disease. In order to provide some insight into the molecular mechanisms involved in the interaction with the host, in the second part of the job, we investigated whether Bifidobacterium was able to capture human plasminogen on the cell surface. The binding of human plasminogen to Bifidobacterium was dependent on lysine residues of surface protein receptors. By using a proteomic approach, we identified six putative plasminogen-binding proteins in the cell wall fraction of three strain of Bifidobacterium. The data suggest that plasminogen binding to Bifidobactrium is due to the concerted action of a number of proteins located on the bacterial cell surface, some of which are highly conserved cytoplasmic proteins which have other essential cellular functions. Our findings represent a step forward in understanding the mechanisms involved in the Bifidobacterium-host interaction. In these job w studied a new approach based on to MALDI-TOF MS to measure the interaction between entire bacterial cells and host molecular target. MALDI-TOF (Matrix Assisted Laser Desorption Ionization-Time of Flight)—mass spectrometry has been applied, for the first time, in the investigation of whole Bifidobacterium cells-host target proteins interaction. In particular, by means of this technique, a dose dependent human plasminogen-binding activity has been shown for Bifidobacterium. The involvement of lysine binding sites on the bacterial cell surface has been proved. The obtained result was found to be consistent with that from well-established standard methodologies, thus the proposed MALDI-TOF approach has the potential to enter as a fast alternative method in the field of biorecognition studies involving in bacterial cells and proteins of human origin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research activities described in the present thesis have been oriented to the design and development of components and technological processes aimed at optimizing the performance of plasma sources in advanced in material treatments. Consumables components for high definition plasma arc cutting (PAC) torches were studied and developed. Experimental activities have in particular focussed on the modifications of the emissive insert with respect to the standard electrode configuration, which comprises a press fit hafnium insert in a copper body holder, to improve its durability. Based on a deep analysis of both the scientific and patent literature, different solutions were proposed and tested. First, the behaviour of Hf cathodes when operating at high current levels (250A) in oxidizing atmosphere has been experimentally investigated optimizing, with respect to expected service life, the initial shape of the electrode emissive surface. Moreover, the microstructural modifications of the Hf insert in PAC electrodes were experimentally investigated during first cycles, in order to understand those phenomena occurring on and under the Hf emissive surface and involved in the electrode erosion process. Thereafter, the research activity focussed on producing, characterizing and testing prototypes of composite inserts, combining powders of a high thermal conductibility (Cu, Ag) and high thermionic emissivity (Hf, Zr) materials The complexity of the thermal plasma torch environment required and integrated approach also involving physical modelling. Accordingly, a detailed line-by-line method was developed to compute the net emission coefficient of Ar plasmas at temperatures ranging from 3000 K to 25000 K and pressure ranging from 50 kPa to 200 kPa, for optically thin and partially autoabsorbed plasmas. Finally, prototypal electrodes were studied and realized for a newly developed plasma source, based on the plasma needle concept and devoted to the generation of atmospheric pressure non-thermal plasmas for biomedical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Throughout the world, pressures on water resources are increasing, mainly as a result of human activity. Because of their accessibility, groundwater and surface water are the most used reservoirs. The evaluation of the water quality requires the identification of the interconnections among the water reservoirs, natural landscape features, human activities and aquatic health. This study focuses on the estimation of the water pollution linked to two different environmental issues: salt water intrusion and acid mine drainage related to the exploitation of natural resources. Effects of salt water intrusion occurring in the shallow aquifer north of Ravenna (Italy) was analysed through the study of ion- exchange occurring in the area and its variance throughout the year, applying a depth-specific sampling method. In the study area were identified ion exchange, calcite and dolomite precipitation, and gypsum dissolution and sulphate reduction as the main processes controlling the groundwater composition. High concentrations of arsenic detected only at specific depth indicate its connexion with the organic matter. Acid mine drainage effects related to the tin extraction in the Bolivian Altiplano was studied, on water and sediment matrix. Water contamination results strictly dependent on the seasonal variation, on pH and redox conditions. During the dry season the strong evaporation and scarce water flow lead to low pH values, high concentrations of heavy metals in surface waters and precipitation of secondary minerals along the river, which could be released in oxidizing conditions as demonstrated through the sequential extraction analysis. The increase of the water flow during the wet season lead to an increase of pH values and a decrease in heavy metal concentrations, due to dilution effect and, as e.g. for the iron, to precipitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maleic anhydride (MA) is a very versatile molecule, indeed, with three functional groups (two carbonyl groups and one double bond C=C) it is an excellent joining and cross-linking material. It is obtained via selective oxidation of n-butane, using vanadyl pyrophosphate as a catalyst. The catalytic system has been largely studied over the years and it is normally used in the industrial production of MA, but the main open problem is to completely control its preparation. This thesis reports the effect of different preparation parameters employed during the calcination procedure for the transformation of precursor into the active catalyst. The thermal treatment is already known to be favoured in the presence of water, hence the first study was on the role of different amount of water co-fed with air, leading to obtain catalysts with an higher crystallinity. This is not the only parameter to control: the molar ratio of oxygen has also an important role, to obtain an active and selective catalyst. Some tests decreasing the “oxidizing power” of the mixture were carried out and it was observed a progressive development of VPP phase instead of oxidized V/P/O systems. Established the role of water and oxygen, the optimal conditions have been found when a mixture composed of air, water and nitrogen was used for the calcination, in the molar ratio of 30:10:60% respectively. Also at the lower temperature tested, i.e. 400°C, the catalyst presents the higher conversion of n-butane and MA yield compared to all other samples. The important conclusion we have reached is that not higher amount of water is necessary to obtain the most performing catalyst, thus leading to economic savings. Performing the same experiments on two different precursors, give catalysts with different activity but the mixture previously descripted is always the one that leads to the best performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nitrosylated form of glutathione (GSNO) has been acknowledged to be the most important nitrosylating agent of the plant cell, and the tuning of its intracellular concentration is of pivotal importance for photosynthetic life. During my time as a PhD student, I focused my attention on the enzymatic systems involved in the degradation of GSNO. Hence, we decided to study the structural and catalytic features of alcohol dehydrogenases (GSNOR and ADH1) from the model land plant Arabidopsis thaliana (At). These enzymes displayed a very similar 3D structure except for their active site which might explain the extreme catalytic specialization of the two enzymes. They share NAD(H) as a cofactor, but only AtGSNOR was able to catalyze the reduction of GSNO whilst being ineffective in oxidizing ethanol. Moreover, our study on the enzyme from the unicellular green alga Chlamydomonas reinhardtii (Cr) revealed how this S-nitrosoglutathione reductase (GSNOR) specifically use NADH to catalyze GSNO reduction and how its activity responds to thiol-based post-translational modifications. Contextually, the presence of NADPH-dependent GSNO-degrading systems in algal protein extract was highlighted and resulted to be relatively efficient in this model organism. This activity could be ascribed to several proteins whose contribution has not been defined yet. Intriguingly, protein extract from GSNOR null mutants of Arabidopsis displayed an increased NADPH-dependent ability to degrade GSNO and our quantitative proteome profiling on the gsnor mutant revealed the overexpression of two class 4 aldo-keto reductases (AKR), specifically AtAKR4C8 and AtAKR4C9. Later, all four class 4 AKRs showed to possess a NADPH-dependent GSNO-degrading activity. Finally, we initiated a preliminary analysis to determine the kinetic parameters of several plant proteins, including GSNOR, AKR4Cs, and thioredoxins. These data suggested GSNOR to be the most effective enzyme in catalyzing GSNO reduction because of its extremely high catalytic proficiency compared to NADPH-dependent systems.