14 resultados para organization and data treatment
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The miniaturization race in the hardware industry aiming at continuous increasing of transistor density on a die does not bring respective application performance improvements any more. One of the most promising alternatives is to exploit a heterogeneous nature of common applications in hardware. Supported by reconfigurable computation, which has already proved its efficiency in accelerating data intensive applications, this concept promises a breakthrough in contemporary technology development. Memory organization in such heterogeneous reconfigurable architectures becomes very critical. Two primary aspects introduce a sophisticated trade-off. On the one hand, a memory subsystem should provide well organized distributed data structure and guarantee the required data bandwidth. On the other hand, it should hide the heterogeneous hardware structure from the end-user, in order to support feasible high-level programmability of the system. This thesis work explores the heterogeneous reconfigurable hardware architectures and presents possible solutions to cope the problem of memory organization and data structure. By the example of the MORPHEUS heterogeneous platform, the discussion follows the complete design cycle, starting from decision making and justification, until hardware realization. Particular emphasis is made on the methods to support high system performance, meet application requirements, and provide a user-friendly programmer interface. As a result, the research introduces a complete heterogeneous platform enhanced with a hierarchical memory organization, which copes with its task by means of separating computation from communication, providing reconfigurable engines with computation and configuration data, and unification of heterogeneous computational devices using local storage buffers. It is distinguished from the related solutions by distributed data-flow organization, specifically engineered mechanisms to operate with data on local domains, particular communication infrastructure based on Network-on-Chip, and thorough methods to prevent computation and communication stalls. In addition, a novel advanced technique to accelerate memory access was developed and implemented.
Resumo:
The Gaia space mission is a major project for the European astronomical community. As challenging as it is, the processing and analysis of the huge data-flow incoming from Gaia is the subject of thorough study and preparatory work by the DPAC (Data Processing and Analysis Consortium), in charge of all aspects of the Gaia data reduction. This PhD Thesis was carried out in the framework of the DPAC, within the team based in Bologna. The task of the Bologna team is to define the calibration model and to build a grid of spectro-photometric standard stars (SPSS) suitable for the absolute flux calibration of the Gaia G-band photometry and the BP/RP spectrophotometry. Such a flux calibration can be performed by repeatedly observing each SPSS during the life-time of the Gaia mission and by comparing the observed Gaia spectra to the spectra obtained by our ground-based observations. Due to both the different observing sites involved and the huge amount of frames expected (≃100000), it is essential to maintain the maximum homogeneity in data quality, acquisition and treatment, and a particular care has to be used to test the capabilities of each telescope/instrument combination (through the “instrument familiarization plan”), to devise methods to keep under control, and eventually to correct for, the typical instrumental effects that can affect the high precision required for the Gaia SPSS grid (a few % with respect to Vega). I contributed to the ground-based survey of Gaia SPSS in many respects: with the observations, the instrument familiarization plan, the data reduction and analysis activities (both photometry and spectroscopy), and to the maintenance of the data archives. However, the field I was personally responsible for was photometry and in particular relative photometry for the production of short-term light curves. In this context I defined and tested a semi-automated pipeline which allows for the pre-reduction of imaging SPSS data and the production of aperture photometry catalogues ready to be used for further analysis. A series of semi-automated quality control criteria are included in the pipeline at various levels, from pre-reduction, to aperture photometry, to light curves production and analysis.
Resumo:
The aging process is characterized by the progressive fitness decline experienced at all the levels of physiological organization, from single molecules up to the whole organism. Studies confirmed inflammaging, a chronic low-level inflammation, as a deeply intertwined partner of the aging process, which may provide the “common soil” upon which age-related diseases develop and flourish. Thus, albeit inflammation per se represents a physiological process, it can rapidly become detrimental if it goes out of control causing an excess of local and systemic inflammatory response, a striking risk factor for the elderly population. Developing interventions to counteract the establishment of this state is thus a top priority. Diet, among other factors, represents a good candidate to regulate inflammation. Building on top of this consideration, the EU project NU-AGE is now trying to assess if a Mediterranean diet, fortified for the elderly population needs, may help in modulating inflammaging. To do so, NU-AGE enrolled a total of 1250 subjects, half of which followed a 1-year long diet, and characterized them by mean of the most advanced –omics and non –omics analyses. The aim of this thesis was the development of a solid data management pipeline able to efficiently cope with the results of these assays, which are now flowing inside a centralized database, ready to be used to test the most disparate scientific hypotheses. At the same time, the work hereby described encompasses the data analysis of the GEHA project, which was focused on identifying the genetic determinants of longevity, with a particular focus on developing and applying a method for detecting epistatic interactions in human mtDNA. Eventually, in an effort to propel the adoption of NGS technologies in everyday pipeline, we developed a NGS variant calling pipeline devoted to solve all the sequencing-related issues of the mtDNA.
3D Surveying and Data Management towards the Realization of a Knowledge System for Cultural Heritage
Resumo:
The research activities involved the application of the Geomatic techniques in the Cultural Heritage field, following the development of two themes: Firstly, the application of high precision surveying techniques for the restoration and interpretation of relevant monuments and archaeological finds. The main case regards the activities for the generation of a high-fidelity 3D model of the Fountain of Neptune in Bologna. In this work, aimed to the restoration of the manufacture, both the geometrical and radiometrical aspects were crucial. The final product was the base of a 3D information system representing a shared tool where the different figures involved in the restoration activities shared their contribution in a multidisciplinary approach. Secondly, the arrangement of 3D databases for a Building Information Modeling (BIM) approach, in a process which involves the generation and management of digital representations of physical and functional characteristics of historical buildings, towards a so-called Historical Building Information Model (HBIM). A first application was conducted for the San Michele in Acerboli’s church in Santarcangelo di Romagna. The survey was performed by the integration of the classical and modern Geomatic techniques and the point cloud representing the church was used for the development of a HBIM model, where the relevant information connected to the building could be stored and georeferenced. A second application regards the domus of Obellio Firmo in Pompeii, surveyed by the integration of the classical and modern Geomatic techniques. An historical analysis permitted the definitions of phases and the organization of a database of materials and constructive elements. The goal is the obtaining of a federate model able to manage the different aspects: documental, analytic and reconstructive ones.
Resumo:
Agri-food supply chains extend beyond national boundaries, partially facilitated by a policy environment that encourages more liberal international trade. Rising concentration within the downstream sector has driven a shift towards “buyer-driven” global value chains (GVCs) extending internationally with global sourcing and the emergence of multinational key economic players that compete with increase emphasis on product quality attributes. Agri-food systems are thus increasingly governed by a range of inter-related public and private standards, both of which are becoming a priori mandatory, especially in supply chains for high-value and quality-differentiated agri-food products and tend to strongly affect upstream agricultural practices, firms’ internal organization and strategic behaviour and to shape the food chain organization. Notably, increasing attention has been given to the impact of SPS measures on agri-food trade and notably on developing countries’ export performance. Food and agricultural trade is the vital link in the mutual dependency of the global trade system and developing countries. Hence, developing countries derive a substantial portion of their income from food and agricultural trade. In Morocco, fruit and vegetable (especially fresh) are the primary agricultural export. Because of the labor intensity, this sector (especially citrus and tomato) is particularly important in terms of income and employment generation, especially for the female laborers hired in the farms and packing houses. Hence, the emergence of agricultural and agrifood product safety issues and the subsequent tightening of market requirements have challenged mutual gains due to the lack of technical and financial capacities of most developing countries.
Resumo:
Chapter 1 studies how consumers’ switching costs affect the pricing and profits of firms competing in two-sided markets such as Apple and Google in the smartphone market. When two-sided markets are dynamic – rather than merely static – I show that switching costs lower the first-period price if network externalities are strong, which is in contrast to what has been found in one-sided markets. By contrast, switching costs soften price competition in the initial period if network externalities are weak and consumers are more patient than the platforms. Moreover, an increase in switching costs on one side decreases the first-period price on the other side. Chapter 2 examines firms’ incentives to invest in local and flexible resources when demand is uncertain and correlated. I find that market power of the monopolist providing flexible resources distorts investment incentives, while competition mitigates them. The extent of improvement depends critically on demand correlation and the cost of capacity: under social optimum and monopoly, if the flexible resource is cheap, the relationship between investment and correlation is positive, and if it is costly, the relationship becomes negative; under duopoly, the relationship is positive. The analysis also sheds light on some policy discussions in markets such as cloud computing. Chapter 3 develops a theory of sequential investments in cybersecurity. The regulator can use safety standards and liability rules to increase security. I show that the joint use of an optimal standard and a full liability rule leads to underinvestment ex ante and overinvestment ex post. Instead, switching to a partial liability rule can correct the inefficiencies. This suggests that to improve security, the regulator should encourage not only firms, but also consumers to invest in security.
Resumo:
This PhD thesis investigates children’s peer practices in two primary schools in Italy, focusing on the ordinary and the Italian L2 classroom. The study is informed by the paradigm of language socialization and considers peer interactions as a ‘double opportunity space’, allowing both children’s co-construction of their social organization and children’s sociolinguistic development. These two foci of attention are explored on the basis of children’s social interaction and of the verbal, embodied, and material resources that children agentively deploy during their mundane activities in the peer group. The study is based on a video ethnography that lasted nine months. Approximately 30 hours of classroom interactions were video-recorded, transcribed, and analyzed with an approach that combines the micro-analytic instruments of Conversation Analysis and the use of ethnographic information. Three main social phenomena were selected for analysis: (a) children’s enactment of the role of the teacher, (b) children’s reproduction of must-formatted rules, and (c) children’s argumentative strategies during peer conflict. The analysis highlights the centrality of the institutional frame for children’s peer interactions in the classroom. Moreover, the study illustrates that children socialize their classmates to the linguistic, social, and moral expectations of the context in and through various practices. Notably, these practices are also germane to the local negotiation of children’s social organization and hierarchy. Therefore, the thesis underlines that children’s peer interactions are both a resource for children’s sociolinguistic development and a potentially problematic locus where social exclusion is constructed and brought to bear. These insights are relevant for teachers’ professional practice. Children’s peer interactions are a resource that can be integrated in everyday didactics. Nevertheless, the role of the teacher in supervising and steering children’s peer practices appears crucial: an acritical view of children’s autonomous work, often implied in teaching methods such as peer tutoring, needs to be problematized.
Resumo:
Hadrontherapy employs high-energy beams of charged particles (protons and heavier ions) to treat deep-seated tumours: these particles have a favourable depth-dose distribution in tissue characterized by a low dose in the entrance channel and a sharp maximum (Bragg peak) near the end of their path. In these treatments nuclear interactions have to be considered: beam particles can fragment in the human body releasing a non-zero dose beyond the Bragg peak while fragments of human body nuclei can modify the dose released in healthy tissues. These effects are still in question given the lack of interesting cross sections data. Also space radioprotection can profit by fragmentation cross section measurements: the interest in long-term manned space missions beyond Low Earth Orbit is growing in these years but it has to cope with major health risks due to space radiation. To this end, risk models are under study: however, huge gaps in fragmentation cross sections data are currently present preventing an accurate benchmark of deterministic and Monte Carlo codes. To fill these gaps in data, the FOOT (FragmentatiOn Of Target) experiment was proposed. It is composed by two independent and complementary setups, an Emulsion Cloud Chamber and an electronic setup composed by several subdetectors providing redundant measurements of kinematic properties of fragments produced in nuclear interactions between a beam and a target. FOOT aims to measure double differential cross sections both in angle and kinetic energy which is the most complete information to address existing questions. In this Ph.D. thesis, the development of the Trigger and Data Acquisition system for the FOOT electronic setup and a first analysis of 400 MeV/u 16O beam on Carbon target data acquired in July 2021 at GSI (Darmstadt, Germany) are presented. When possible, a comparison with other available measurements is also reported.
Resumo:
The term Artificial intelligence acquired a lot of baggage since its introduction and in its current incarnation is synonymous with Deep Learning. The sudden availability of data and computing resources has opened the gates to myriads of applications. Not all are created equal though, and problems might arise especially for fields not closely related to the tasks that pertain tech companies that spearheaded DL. The perspective of practitioners seems to be changing, however. Human-Centric AI emerged in the last few years as a new way of thinking DL and AI applications from the ground up, with a special attention at their relationship with humans. The goal is designing a system that can gracefully integrate in already established workflows, as in many real-world scenarios AI may not be good enough to completely replace its humans. Often this replacement may even be unneeded or undesirable. Another important perspective comes from, Andrew Ng, a DL pioneer, who recently started shifting the focus of development from “better models” towards better, and smaller, data. He defined his approach Data-Centric AI. Without downplaying the importance of pushing the state of the art in DL, we must recognize that if the goal is creating a tool for humans to use, more raw performance may not align with more utility for the final user. A Human-Centric approach is compatible with a Data-Centric one, and we find that the two overlap nicely when human expertise is used as the driving force behind data quality. This thesis documents a series of case-studies where these approaches were employed, to different extents, to guide the design and implementation of intelligent systems. We found human expertise proved crucial in improving datasets and models. The last chapter includes a slight deviation, with studies on the pandemic, still preserving the human and data centric perspective.
Resumo:
The thesis represents the conclusive outcome of the European Joint Doctorate programmein Law, Science & Technology funded by the European Commission with the instrument Marie Skłodowska-Curie Innovative Training Networks actions inside of the H2020, grantagreement n. 814177. The tension between data protection and privacy from one side, and the need of granting further uses of processed personal datails is investigated, drawing the lines of the technological development of the de-anonymization/re-identification risk with an explorative survey. After acknowledging its span, it is questioned whether a certain degree of anonymity can still be granted focusing on a double perspective: an objective and a subjective perspective. The objective perspective focuses on the data processing models per se, while the subjective perspective investigates whether the distribution of roles and responsibilities among stakeholders can ensure data anonymity.
Resumo:
The discovery of new materials and their functions has always been a fundamental component of technological progress. Nowadays, the quest for new materials is stronger than ever: sustainability, medicine, robotics and electronics are all key assets which depend on the ability to create specifically tailored materials. However, designing materials with desired properties is a difficult task, and the complexity of the discipline makes it difficult to identify general criteria. While scientists developed a set of best practices (often based on experience and expertise), this is still a trial-and-error process. This becomes even more complex when dealing with advanced functional materials. Their properties depend on structural and morphological features, which in turn depend on fabrication procedures and environment, and subtle alterations leads to dramatically different results. Because of this, materials modeling and design is one of the most prolific research fields. Many techniques and instruments are continuously developed to enable new possibilities, both in the experimental and computational realms. Scientists strive to enforce cutting-edge technologies in order to make progress. However, the field is strongly affected by unorganized file management, proliferation of custom data formats and storage procedures, both in experimental and computational research. Results are difficult to find, interpret and re-use, and a huge amount of time is spent interpreting and re-organizing data. This also strongly limit the application of data-driven and machine learning techniques. This work introduces possible solutions to the problems described above. Specifically, it talks about developing features for specific classes of advanced materials and use them to train machine learning models and accelerate computational predictions for molecular compounds; developing method for organizing non homogeneous materials data; automate the process of using devices simulations to train machine learning models; dealing with scattered experimental data and use them to discover new patterns.
Resumo:
The purpose of this research study is to discuss privacy and data protection-related regulatory and compliance challenges posed by digital transformation in healthcare in the wake of the COVID-19 pandemic. The public health crisis accelerated the development of patient-centred remote/hybrid healthcare delivery models that make increased use of telehealth services and related digital solutions. The large-scale uptake of IoT-enabled medical devices and wellness applications, and the offering of healthcare services via healthcare platforms (online doctor marketplaces) have catalysed these developments. However, the use of new enabling technologies (IoT, AI) and the platformisation of healthcare pose complex challenges to the protection of patient’s privacy and personal data. This happens at a time when the EU is drawing up a new regulatory landscape for the use of data and digital technologies. Against this background, the study presents an interdisciplinary (normative and technology-oriented) critical assessment on how the new regulatory framework may affect privacy and data protection requirements regarding the deployment and use of Internet of Health Things (hardware) devices and interconnected software (AI systems). The study also assesses key privacy and data protection challenges that affect healthcare platforms (online doctor marketplaces) in their offering of video API-enabled teleconsultation services and their (anticipated) integration into the European Health Data Space. The overall conclusion of the study is that regulatory deficiencies may create integrity risks for the protection of privacy and personal data in telehealth due to uncertainties about the proper interplay, legal effects and effectiveness of (existing and proposed) EU legislation. The proliferation of normative measures may increase compliance costs, hinder innovation and ultimately, deprive European patients from state-of-the-art digital health technologies, which is paradoxically, the opposite of what the EU plans to achieve.