7 resultados para organic semiconductors
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Many studies on the morphology, molecular orientation, device performance, substrate nature and growth parameter dependence have been carried out since the proposal of Sexithiophene (6T) for organic electronics [ ] However, these studies were mostly performed on films thicker than 20nm and without specifically addressing the relationship between morphology and molecular orientation within the nano and micro structures of ultrathin films of 0-3 monolayers. In 2004, the observation that in OFETs only the first few monolayers at the interface in contact with the gate insulator contribute to the charge transport [ ], underlined the importance to study submonolayer films and their evolution up to a few monolayers of thickness with appropriate experimental techniques. We present here a detailed Non-contact Atomic Force Microscopy and Scanning Tunneling Microscopy study on various substrates aiming at the investigation of growth mechanisms. Most reported similar studies are performed on ideal metals in UHV. However it is important to investigate the details of organic film growth on less ideal and even technological surfaces and device testpatterns. The present work addresses the growth of ultra thin organic films in-situ and quasi real-time by NC-AFM. An organic effusion cell is installed to evaporate the organic material directly onto the SPM sample scanning stage.
Resumo:
In this thesis, I report on a comprehensive study about the photo-physical properties both in solution and in solid-state of a new thiophene based material (2,2’-(2,2’-bithiophene-5,5’-diyl)bis(5-butyl-5H-thieno[2,3-c]pyrrole-4,6)-dione (T4DIM) which shows an ambipolar semiconducting behavior together with electroluminescence in single-layer OLET device architecture[14
Resumo:
Organic electronics has grown enormously during the last decades driven by the encouraging results and the potentiality of these materials for allowing innovative applications, such as flexible-large-area displays, low-cost printable circuits, plastic solar cells and lab-on-a-chip devices. Moreover, their possible field of applications reaches from medicine, biotechnology, process control and environmental monitoring to defense and security requirements. However, a large number of questions regarding the mechanism of device operation remain unanswered. Along the most significant is the charge carrier transport in organic semiconductors, which is not yet well understood. Other example is the correlation between the morphology and the electrical response. Even if it is recognized that growth mode plays a crucial role into the performance of devices, it has not been exhaustively investigated. The main goal of this thesis was the finding of a correlation between growth modes, electrical properties and morphology in organic thin-film transistors (OTFTs). In order to study the thickness dependence of electrical performance in organic ultra-thin-film transistors, we have designed and developed a home-built experimental setup for performing real-time electrical monitoring and post-growth in situ electrical characterization techniques. We have grown pentacene TFTs under high vacuum conditions, varying systematically the deposition rate at a fixed room temperature. The drain source current IDS and the gate source current IGS were monitored in real-time; while a complete post-growth in situ electrical characterization was carried out. At the end, an ex situ morphological investigation was performed by using the atomic force microscope (AFM). In this work, we present the correlation for pentacene TFTs between growth conditions, Debye length and morphology (through the correlation length parameter). We have demonstrated that there is a layered charge carriers distribution, which is strongly dependent of the growth mode (i.e. rate deposition for a fixed temperature), leading to a variation of the conduction channel from 2 to 7 monolayers (MLs). We conciliate earlier reported results that were apparently contradictory. Our results made evident the necessity of reconsidering the concept of Debye length in a layered low-dimensional device. Additionally, we introduce by the first time a breakthrough technique. This technique makes evident the percolation of the first MLs on pentacene TFTs by monitoring the IGS in real-time, correlating morphological phenomena with the device electrical response. The present thesis is organized in the following five chapters. Chapter 1 makes an introduction to the organic electronics, illustrating the operation principle of TFTs. Chapter 2 presents the organic growth from theoretical and experimental points of view. The second part of this chapter presents the electrical characterization of OTFTs and the typical performance of pentacene devices is shown. In addition, we introduce a correcting technique for the reconstruction of measurements hampered by leakage current. In chapter 3, we describe in details the design and operation of our innovative home-built experimental setup for performing real-time and in situ electrical measurements. Some preliminary results and the breakthrough technique for correlating morphological and electrical changes are presented. Chapter 4 meets the most important results obtained in real-time and in situ conditions, which correlate growth conditions, electrical properties and morphology of pentacene TFTs. In chapter 5 we describe applicative experiments where the electrical performance of pentacene TFTs has been investigated in ambient conditions, in contact to water or aqueous solutions and, finally, in the detection of DNA concentration as label-free sensor, within the biosensing framework.
Resumo:
From the perspective of a new-generation opto-electronic technology based on organic semiconductors, a major objective is to achieve a deep and detailed knowledge of the structure-property relationships, in order to optimize the electronic, optical, and charge transport properties by tuning the chemical-physical characteristics of the compounds. The purpose of this dissertation is to contribute to such understanding, through suitable theoretical and computational studies. Precisely, the structural, electronic, optical, and charge transport characteristics of several promising organic materials recently synthesized are investigated by means of an integrated approach encompassing quantum-chemical calculations, molecular dynamics and kinetic Monte Carlo simulations. Particular care is addressed to the rationalization of optical and charge transport properties in terms of both intra- and intermolecular features. Moreover, a considerable part of this project involves the development of a home-made set of procedures and parts of software code required to assist the modeling of charge transport properties in the framework of the non-adiabatic hopping mechanism applied to organic crystalline materials. As a first part of my investigations, I mainly discuss the optical, electronic, and structural properties of several core-extended rylene derivatives, which can be regarded to as model compounds for graphene nanoribbons. Two families have been studied, consisting in bay-linked perylene bisimide oligomers and N-annulated rylenes. Beside rylene derivatives, my studies also concerned electronic and spectroscopic properties of tetracene diimides, quinoidal oligothiophenes, and oxygen doped picene. As an example of device application, I studied the structural characteristics governing the efficiency of resistive molecular memories based on a derivative of benzoquinone. Finally, as a second part of my investigations, I concentrate on the charge transport properties of perylene bisimides derivatives. Precisely, a comprehensive study of the structural and thermal effects on the charge transport of several core-twisted chlorinated and fluoro-alkylated perylene bisimide n-type semiconductors is presented.
Resumo:
Organic semiconductors have great promise in the field of electronics due to their low cost in term of fabrication on large areas and their versatility to new devices, for these reasons they are becoming a great chance in the actual technologic scenery. Some of the most important open issues related to these materials are the effects of surfaces and interfaces between semiconductor and metals, the changes caused by different deposition methods and temperature, the difficulty related to the charge transport modeling and finally a fast aging with time, bias, air and light, that can change the properties very easily. In order to find out some important features of organic semiconductors I fabricated Organic Field Effect Transistors (OFETs), using them as characterization tools. The focus of my research is to investigate the effects of ion implantation on organic semiconductors and on OFETs. Ion implantation is a technique widely used on inorganic semiconductors to modify their electrical properties through the controlled introduction of foreign atomic species in the semiconductor matrix. I pointed my attention on three major novel and interesting effects, that I observed for the first time following ion implantation of OFETs: 1) modification of the electrical conductivity; 2) introduction of stable charged species, electrically active with organic thin films; 3) stabilization of transport parameters (mobility and threshold voltage). I examined 3 different semiconductors: Pentacene, a small molecule constituted by 5 aromatic rings, Pentacene-TIPS, a more complex by-product of the first one, and finally an organic material called Pedot PSS, that belongs to the branch of the conductive polymers. My research started with the analysis of ion implantation of Pentacene films and Pentacene OFETs. Then, I studied totally inkjet printed OFETs made of Pentacene-TIPS or PEDOT-PSS, and the research will continue with the ion implantation on these promising organic devices.
Resumo:
The present thesis is focused on the study of Organic Semiconducting Single Crystals (OSSCs) and crystalline thin films. In particular solution-grown OSSC, e.g. 4-hdroxycyanobenzene (4HCB) have been characterized in view of their applications as novel sensors of X-rays, gamma-rays, alpha particles radiations and chemical sensors. In the field of ionizing radiation detection, organic semiconductors have been proposed so far mainly as indirect detectors, i.e. as scintillators or as photodiodes. I first study the performance of 4HCB single crystals as direct X-ray detector i.e. the direct photon conversion into an electrical signal, assessing that they can operate at room temperature and in atmosphere, showing a stable and linear response with increasing dose rate. A dedicated study of the collecting electrodes geometry, crystal thickness and interaction volume allowed us to maximize the charge collection efficiency and sensitivity, thus assessing how OSSCs perform at low operating voltages and offer a great potential in the development of novel ionizing radiation sensors. To better understand the processes generating the observed X-ray signal, a comparative study is presented on OSSCs based on several small-molecules: 1,5-dinitronaphthalene (DNN), 1,8-naphthaleneimide (NTI), Rubrene and TIPS-pentacene. In addition, the proof of principle of gamma-rays and alpha particles has been assessed for 4HCB single crystals. I have also carried out an investigation of the electrical response of OSSCs exposed to vapour of volatile molecules, polar and non-polar. The last chapter deals with rubrene, the highest performing molecular crystals for electronic applications. We present an investigation on high quality, millimeter-sized, crystalline thin films (10 – 100 nm thick) realized by exploiting organic molecular beam epitaxy on water-soluble substrates. Space-Charge-Limited Current (SCLC) and photocurrent spectroscopy measurements have been carried out. A thin film transistor was fabricated onto a Cytop® dielectric layer. The FET mobility exceeding 2 cm2/Vs, definitely assess the quality of RUB films.
Resumo:
The aim of the research activity focused on the investigation of the correlation between the degree of purity in terms of chemical dopants in organic small molecule semiconductors and their electrical and optoelectronic performances once introduced as active material in devices. The first step of the work was addressed to the study of the electrical performances variation of two commercial organic semiconductors after being processed by means of thermal sublimation process. In particular, the p-type 2,2′′′-Dihexyl-2,2′:5′,2′′:5′′,2′′′-quaterthiophene (DH4T) semiconductor and the n-type 2,2′′′- Perfluoro-Dihexyl-2,2′:5′,2′′:5′′,2′′′-quaterthiophene (DFH4T) semiconductor underwent several sublimation cycles, with consequent improvement of the electrical performances in terms of charge mobility and threshold voltage, highlighting the benefits brought by this treatment to the electric properties of the discussed semiconductors in OFET devices by the removal of residual impurities. The second step consisted in the provision of a metal-free synthesis of DH4T, which was successfully prepared without organometallic reagents or catalysts in collaboration with Dr. Manuela Melucci from ISOF-CNR Institute in Bologna. Indeed the experimental work demonstrated that those compounds are responsible for the electrical degradation by intentionally doping the semiconductor obtained by metal-free method by Tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4) and Tributyltin chloride (Bu3SnCl), as well as with an organic impurity, like 5-hexyl-2,2':5',2''-terthiophene (HexT3) at, in different concentrations (1, 5 and 10% w/w). After completing the entire evaluation process loop, from fabricating OFET devices by vacuum sublimation with implemented intentionally-doped batches to the final electrical characterization in inherent-atmosphere conditions, commercial DH4T, metal-free DH4T and the intentionally-doped DH4T were systematically compared. Indeed, the fabrication of OFET based on doped DH4T clearly pointed out that the vacuum sublimation is still an inherent and efficient purification method for crude semiconductors, but also a reliable way to fabricate high performing devices.