3 resultados para optical waveguide components

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need for high bandwidth, due to the explosion of new multi\-media-oriented IP-based services, as well as increasing broadband access requirements is leading to the need of flexible and highly reconfigurable optical networks. While transmission bandwidth does not represent a limit due to the huge bandwidth provided by optical fibers and Dense Wavelength Division Multiplexing (DWDM) technology, the electronic switching nodes in the core of the network represent the bottleneck in terms of speed and capacity for the overall network. For this reason DWDM technology must be exploited not only for data transport but also for switching operations. In this Ph.D. thesis solutions for photonic packet switches, a flexible alternative with respect to circuit-switched optical networks are proposed. In particular solutions based on devices and components that are expected to mature in the near future are proposed, with the aim to limit the employment of complex components. The work presented here is the result of part of the research activities performed by the Networks Research Group at the Department of Electronics, Computer Science and Systems (DEIS) of the University of Bologna, Italy. In particular, the work on optical packet switching has been carried on within three relevant research projects: the e-Photon/ONe and e-Photon/ONe+ projects, funded by the European Union in the Sixth Framework Programme, and the national project OSATE funded by the Italian Ministry of Education, University and Scientific Research. The rest of the work is organized as follows. Chapter 1 gives a brief introduction to network context and contention resolution in photonic packet switches. Chapter 2 presents different strategies for contention resolution in wavelength domain. Chapter 3 illustrates a possible implementation of one of the schemes proposed in chapter 2. Then, chapter 4 presents multi-fiber switches, which employ jointly wavelength and space domains to solve contention. Chapter 5 shows buffered switches, to solve contention in time domain besides wavelength domain. Finally chapter 6 presents a cost model to compare different switch architectures in terms of cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing interest for Integrated Optics for sensing, telecommunications and even electronics is driving research to find solutions to the new challenges issued by a more and more fast, connected and smart world. This thesis deals with the design, the fabrication and the characterisation of the first prototypes of Microring Resonators realised using ion implanted Lithium Niobate (LiNbO3) ridge waveguides. Optical Resonator is one among the most important devices for all tasks described above. LiNbO3 is the substrate commonly used to fabricate optical modulators thanks to its electro-optic characteristics. Since it is produced in high quantity, good quality and large wafers its price is low compared to other electro-optic substrate. We propose to use ion implantation as fabrication technology because in the other way standard optical waveguides realised in LiNbO3 by Proton Exchange (PE) or metal diffusion do not allow small bending radii, which are necessary to keep the circuit footprint small. We will show in fact that this approach allows to fabricate waveguides on Lithium Niobate that are better than PE or metal diffused waveguides as it allows smaller size devices and tailoring of the refractive index profile controlling the implantation parameters. Moreover, we will show that the ridge technology based on enhanced etching rate via ion implantation produces a waveguide with roughness lower than a dry etched one. Finally it has been assessed a complete technological process for fabrication of Microring Resonator devices in Lithium Niobate by ion implantation and the first prototypes have been produced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis proposes design methods and test tools, for optical systems, which may be used in an industrial environment, where not only precision and reliability but also ease of use is important. The approach to the problem has been conceived to be as general as possible, although in the present work, the design of a portable device for automatic identification applications has been studied, because this doctorate has been funded by Datalogic Scanning Group s.r.l., a world-class producer of barcode readers. The main functional components of the complete device are: electro-optical imaging, illumination and pattern generator systems. For what concerns the electro-optical imaging system, a characterization tool and an analysis one has been developed to check if the desired performance of the system has been achieved. Moreover, two design tools for optimizing the imaging system have been implemented. The first optimizes just the core of the system, the optical part, improving its performance ignoring all other contributions and generating a good starting point for the optimization of the whole complex system. The second tool optimizes the system taking into account its behavior with a model as near as possible to reality including optics, electronics and detection. For what concerns the illumination and the pattern generator systems, two tools have been implemented. The first allows the design of free-form lenses described by an arbitrary analytical function exited by an incoherent source and is able to provide custom illumination conditions for all kind of applications. The second tool consists of a new method to design Diffractive Optical Elements excited by a coherent source for large pattern angles using the Iterative Fourier Transform Algorithm. Validation of the design tools has been obtained, whenever possible, comparing the performance of the designed systems with those of fabricated prototypes. In other cases simulations have been used.