5 resultados para optical beat detection
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Satellite remote sensing has proved to be an effective support in timely detection and monitoring of marine oil pollution, mainly due to illegal ship discharges. In this context, we have developed a new methodology and technique for optical oil spill detection, which make use of MODIS L2 and MERIS L1B satellite top of atmosphere (TOA) reflectance imagery, for the first time in a highly automated way. The main idea was combining wide swaths and short revisit times of optical sensors with SAR observations, generally used in oil spill monitoring. This arises from the necessity to overcome the SAR reduced coverage and long revisit time of the monitoring area. This can be done now, given the MODIS and MERIS higher spatial resolution with respect to older sensors (250-300 m vs. 1 km), which consents the identification of smaller spills deriving from illicit discharge at sea. The procedure to obtain identifiable spills in optical reflectance images involves removal of oceanic and atmospheric natural variability, in order to enhance oil-water contrast; image clustering, which purpose is to segment the oil spill eventually presents in the image; finally, the application of a set of criteria for the elimination of those features which look like spills (look-alikes). The final result is a classification of oil spill candidate regions by means of a score based on the above criteria.
Resumo:
This thesis proposes design methods and test tools, for optical systems, which may be used in an industrial environment, where not only precision and reliability but also ease of use is important. The approach to the problem has been conceived to be as general as possible, although in the present work, the design of a portable device for automatic identification applications has been studied, because this doctorate has been funded by Datalogic Scanning Group s.r.l., a world-class producer of barcode readers. The main functional components of the complete device are: electro-optical imaging, illumination and pattern generator systems. For what concerns the electro-optical imaging system, a characterization tool and an analysis one has been developed to check if the desired performance of the system has been achieved. Moreover, two design tools for optimizing the imaging system have been implemented. The first optimizes just the core of the system, the optical part, improving its performance ignoring all other contributions and generating a good starting point for the optimization of the whole complex system. The second tool optimizes the system taking into account its behavior with a model as near as possible to reality including optics, electronics and detection. For what concerns the illumination and the pattern generator systems, two tools have been implemented. The first allows the design of free-form lenses described by an arbitrary analytical function exited by an incoherent source and is able to provide custom illumination conditions for all kind of applications. The second tool consists of a new method to design Diffractive Optical Elements excited by a coherent source for large pattern angles using the Iterative Fourier Transform Algorithm. Validation of the design tools has been obtained, whenever possible, comparing the performance of the designed systems with those of fabricated prototypes. In other cases simulations have been used.
Resumo:
The PhD research activity has taken place in the space debris field. In detail, it is focused on the possibility of detecting space debris from the space based platform. The research is focused at the same time on the software and the hardware of this detection system. For the software, a program has been developed for being able to detect an object in space and locate it in the sky solving the star field. For the hardware, the possibility of adapting a ground telescope for space activity has been considered and it has been tested on a possible electronic board.
Resumo:
In recent years, composite materials have revolutionized the design of many structures. Their superior mechanical properties and light weight make composites convenient over traditional metal structures for many applications. However, composite materials are susceptible to complex and challenging to predict damage behaviors due to their anisotropy nature. Therefore, structural Health Monitoring (SHM) can be a valuable tool to assess the damage and understand the physics underneath. Distributed Optical Fiber Sensors (DOFS) can be used to monitor several types of damage in composites. However, their implementation outside academia is still unsatisfactory. One of the hindrances is the lack of a rigorous methodology for uncertainty quantification, which is essential for the performance assessment of the monitoring system. The concept of Probability of Detection (POD) must function as the guiding light in this process. However, precautions must be taken since this tool was established for Non-Destructive Evaluation (NDE) rather than Structural Health Monitoring (SHM). In addition, although DOFS have been the object of numerous studies, a well-established POD methodology for their performance assessment is still missing. This thesis aims to develop a methodology to produce POD curves for DOFS in composite materials. The problem is analyzed considering several critical points, such as the strain transfer characterizing the DOFS and the development of an experimental and model-assisted methodology to understand the parameters that affect the DOFS performance.
Resumo:
The Deep Underground Neutrino Experiment (DUNE) is a long-baseline accelerator experiment designed to make a significant contribution to the study of neutrino oscillations with unprecedented sensitivity. The main goal of DUNE is the determination of the neutrino mass ordering and the leptonic CP violation phase, key parameters of the three-neutrino flavor mixing that have yet to be determined. An important component of the DUNE Near Detector complex is the System for on-Axis Neutrino Detection (SAND) apparatus, which will include GRAIN (GRanular Argon for Interactions of Neutrinos), a novel liquid Argon detector aimed at imaging neutrino interactions using only scintillation light. For this purpose, an innovative optical readout system based on Coded Aperture Masks is investigated. This dissertation aims to demonstrate the feasibility of reconstructing particle tracks and the topology of CCQE (Charged Current Quasi Elastic) neutrino events in GRAIN with such a technique. To this end, the development and implementation of a reconstruction algorithm based on Maximum Likelihood Expectation Maximization was carried out to directly obtain a three-dimensional distribution proportional to the energy deposited by charged particles crossing the LAr volume. This study includes the evaluation of the design of several camera configurations and the simulation of a multi-camera optical system in GRAIN.