9 resultados para optic lobe
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
MITOCHONDRIAL DYSFUNCTION IN HEREDITARY OPTIC NEUROPATHIES Mitochondrial pathologies are a heterogeneous group of clinical manifestations characterized by oxidative phosphorylation impairment. At the beginning of their recognition mitochondrial pathologies were regarded as rare disorders but indeed they are more frequent than originally thought. Due to the unique mitochondria peculiarities mitochondrial pathologies can be caused by mutations in both mitochondrial and nuclear genomes. The poor knowledge of pathologic mechanism of these disorders has not allowed a real development of the “mitochondrial medicine”, that is currently limited to symptoms mitigation. Leber hereditary optic neuropathy (LHON) was the first pathology to be linked to a point mutation in the mtDNA. The mechanism by which point mutations in mitochondrial gene encoding Complex I subunits leads to optic nerve degeneration is still unknown, although is well accepted that other genetic or environmental factors are involved in the modulation of pathology, where a pivotal role is certainly played by oxidative stress. We studied the relationship between the Ala16Val dimorphism in the mitochondrial targeting sequence of nuclear gene SOD2 and the 3460/ND1 LHON mutation. Our results show that, in control population, the heterozygous SOD2 genotype is associated to a higher activity and quantity of MnSOD, particularly with respect to Val homozygotes. Furthermore, we demonstrated that LHON patients harboring at least one Ala allele are characterized by an increased MnSOD activity with respect to relative control population. Since the ATP synthesis rate – severely reduced in LHON patients lymphocytes - is not affected by the SOD2 genotype, we concluded that SOD2 gene could modulate the pathogenicity of LHON mutations through a mechanism associated to an increase of reactive oxygen species production. Autosomal dominant optic atrophy (ADOA) is a pathology linked to mutations in nuclear gene encoding Opa1, a dynamin-related protein localized in the mitochondrial matrix. Although the clinical course is slightly different, the endpoint of ADOA is exactly the same of LHON: optic nerve degeneration with specific involvement of retinal ganglion cells. Opa1 is a relatively new protein, whose major role is the regulation of mitochondrial fusion. Mitochondrial morphology is the results of the equilibrium between two opposite force: fusion and fission, two processes that have to be finely regulated in order to preserve mitochondrial and cellular physiology. We studied fibroblasts deriving from ADOA patients characterized by a new deletion in the GTPase domain of the OPA1 gene. The biochemical characterization of ADOA and control fibroblasts has concerned the evaluation of ATP synthesis rate, mitochondrial membrane potential in different metabolic conditions and the morphological status of mitochondria. Regarding ATP synthesis rate we did not find significant differences between ADOA and control fibroblasts even though a trend toward increased reduction in ADOA samples is observed when fibroblasts are grown in absence of glucose or in the medium containing gramicidin. Furthermore, we found that also in ADOA fibroblasts membrane potential is actively maintained by proton pumping of fully functional respiratory chain complexes. Our results indicate that the mutation found in the pedigree analyzed acts primary impairing the mitochondrial fusion without affecting the energy production, supporting the notion that cell function is tightly linked to mitochondrial morphology. Mitochondrial dysfunctions are acquiring great attention because of their recognized relevance not only in aging but also in age-related pathologies including cancer, cardiovascular disease, type II diabetes, and neurodegenerative disorders. The involvement of mitochondria in such detrimental pathologies that, currently, have become so common enhances the necessity of standardization of therapeutic strategies capable of rescuing the normal mitochondrial function. In order to propose an alternative treatment for energy deficiency-disorders we tested the effect of substrates capable to stimulate the substrate-level phosphorylation on viability and energy availability in different experimental models grown under different metabolic conditions. In fibroblasts, the energy defect was achieved by culturing cells in presence of oligomycin, an inhibitor of ATP synthase complex. NARP cybrids have been used as model of mitochondrial pathology. Cell viability and ATP content have been considered as parameters to assay the capability of exogenous substrate to rescue energy failure. Our results suggest that patients suffering for some forms of ATP synthase deficiency, or characterized by a deficiency in energy production, might benefit from dietary or pharmacological treatment based on supplementation of α-ketoglutarate and aspartate.
Resumo:
Leberâs hereditary optic neuropathy (LHON) is a mitochondrial disease characterized by a rapid loss of central vision and optic atrophy, due to the selective degeneration of retinal ganglion cells. The age of onset is around 20, and the degenerative process is fast and usually the second eye becomes affected in weeks or months. Even if this pathology is well known and has been well characterized, there are still open questions on its pathophysiology, such as the male prevalence, the incomplete penetrance and the tissue selectivity. This maternally inherited disease is caused by mutations in mitochondrial encoded genes of NADH ubiquinone oxidoreductase (complex I) of the respiratory chain. The 90% of LHON cases are caused by one of the three common mitochondrial DNA mutations (11778/ND4, 14484/ND6 and 3460/ND1) and the remaining 10% is caused by rare pathogenic mutations, reported in literature in one or few families. Moreover, there is also a small subset of patients reported with new putative pathogenic nucleotide changes, which awaits to be confirmed. We here clarify some molecular aspects of LHON, mainly the incomplete penetrance and the role of rare mtDNA mutations or variants on LHON expression, and attempt a possible therapeutic approach using the cybrids cell model. We generated novel structural models for mitochondrial encoded complex I subunits and a conservation analysis and pathogenicity prediction have been carried out for LHON reported mutations. This in-silico approach allowed us to locate LHON pathogenic mutations in defined and conserved protein domains and can be a useful tool in the analysis of novel mtDNA variants with unclear pathogenic/functional role. Four rare LHON pathogenic mutations have been identified, confirming that the ND1 and ND6 genes are mutational hot spots for LHON. All mutations were previously described at least once and we validated their pathogenic role, suggesting the need for their screening in LHON diagnostic protocols. Two novel mtDNA variants with a possible pathogenic role have been also identified in two independent branches of a large pedigree. Functional studies are necessary to define their contribution to LHON in this family. It also been demonstrated that the combination of mtDNA rare polymorphic variants is relevant in determining the maternal recurrence of myoclonus in unrelated LHON pedigrees. Thus, we suggest that particular mtDNA backgrounds and /or the presence of specific rare mutations may increase the pathogenic potential of the primary LHON mutations, thereby giving rise to the extraocular clinical features characteristic of the LHON âplusâ phenotype. We identified the first molecular parameter that clearly discriminates LHON affected individuals from asymptomatic carriers, the mtDNA copy number. This provides a valuable mechanism for future investigations on variable penetrance in LHON. However, the increased mtDNA content in LHON individuals was not correlated to the functional polymorphism G1444A of PGC-1 alpha, the master regulator of mitochondrial biogenesis, but may be due to gene expression of genes involved in this signaling pathway, such as PGC-1 alpha/beta and Tfam. Future studies will be necessary to identify the biochemical effects of rare pathogenic mutations and to validate the novel candidate mutations here described, in terms of cellular bioenergetic characterization of these variants. Moreover, we were not able to induce mitochondrial biogenesis in cybrids cell lines using bezafibrate. However, other cell line models are available, such as fibroblasts harboring LHON mutations, or other approaches can be used to trigger the mitochondrial biogenesis.
Resumo:
Introduction: Nocturnal frontal lobe epilepsy (NFLE) is a distinct syndrome of partial epilepsy whose clinical features comprise a spectrum of paroxysmal motor manifestations of variable duration and complexity, arising from sleep. Cardiovascular changes during NFLE seizures have previously been observed, however the extent of these modifications and their relationship with seizure onset has not been analyzed in detail. Objective: Aim of present study is to evaluate NFLE seizure related changes in heart rate (HR) and in sympathetic/parasympathetic balance through wavelet analysis of HR variability (HRV). Methods: We evaluated the whole night digitally recorded video-polysomnography (VPSG) of 9 patients diagnosed with NFLE with no history of cardiac disorders and normal cardiac examinations. Events with features of NFLE seizures were selected independently by three examiners and included in the study only if a consensus was reached. Heart rate was evaluated by measuring the interval between two consecutive R-waves of QRS complexes (RRi). RRi series were digitally calculated for a period of 20 minutes, including the seizures and resampled at 10 Hz using cubic spline interpolation. A multiresolution analysis was performed (Daubechies-16 form), and the squared level specific amplitude coefficients were summed across appropriate decomposition levels in order to compute total band powers in bands of interest (LF: 0.039062 - 0.156248, HF: 0.156248 - 0.624992). A general linear model was then applied to estimate changes in RRi, LF and HF powers during three different period (Basal) (30 sec, at least 30 sec before seizure onset, during which no movements occurred and autonomic conditions resulted stationary); pre-seizure period (preSP) (10 sec preceding seizure onset) and seizure period (SP) corresponding to the clinical manifestations. For one of the patients (patient 9) three seizures associated with ictal asystole were recorded, hence he was treated separately. Results: Group analysis performed on 8 patients (41 seizures) showed that RRi remained unchanged during the preSP, while a significant tachycardia was observed in the SP. A significant increase in the LF component was instead observed during both the preSP and the SP (p<0.001) while HF component decreased only in the SP (p<0.001). For patient 9 during the preSP and in the first part of SP a significant tachycardia was observed associated with an increased sympathetic activity (increased LF absolute values and LF%). In the second part of the SP a progressive decrease in HR that gradually exceeded basal values occurred before IA. Bradycardia was associated with an increase in parasympathetic activity (increased HF absolute values and HF%) contrasted by a further increase in LF until the occurrence of IA. Conclusions: These data suggest that changes in autonomic balance toward a sympathetic prevalence always preceded clinical seizure onset in NFLE, even when HR changes were not yet evident, confirming that wavelet analysis is a sensitive technique to detect sudden variations of autonomic balance occurring during transient phenomena. Finally we demonstrated that epileptic asystole is associated with a parasympathetic hypertonus counteracted by a marked sympathetic activation.
Resumo:
The mitochondrion is an essential cytoplasmic organelle that provides most of the energy necessary for eukaryotic cell physiology. Mitochondrial structure and functions are maintained by proteins of both mitochondrial and nuclear origin. These organelles are organized in an extended network that dynamically fuses and divides. Mitochondrial morphology results from the equilibrium between fusion and fission processes, controlled by a family of “mitochondria-shaping” proteins. It is becoming clear that defects in mitochondrial dynamics can impair mitochondrial respiration, morphology and motility, leading to apoptotic cell death in vitro and more or less severe neurodegenerative disorders in vivo in humans. Mutations in OPA1, a nuclear encoded mitochondrial protein, cause autosomal Dominant Optic Atrophy (DOA), a heterogeneous blinding disease characterized by retinal ganglion cell degeneration leading to optic neuropathy (Delettre et al., 2000; Alexander et al., 2000). OPA1 is a mitochondrial dynamin-related guanosine triphosphatase (GTPase) protein involved in mitochondrial network dynamics, cytochrome c storage and apoptosis. This protein is anchored or associated on the inner mitochondrial membrane facing the intermembrane space. Eight OPA1 isoforms resulting from alternative splicing combinations of exon 4, 4b and 5b have been described (Delettre et al., 2001). These variants greatly vary among diverse organs and the presence of specific isoforms has been associated with various mitochondrial functions. The different spliced exons encode domains included in the amino-terminal region and contribute to determine OPA1 functions (Olichon et al., 2006). It has been shown that exon 4, that is conserved throughout evolution, confers functions to OPA1 involved in maintenance of the mitochondrial membrane potential and in the fusion of the network. Conversely, exon 4b and exon 5b, which are vertebrate specific, are involved in regulation of cytochrome c release from mitochondria, and activation of apoptosis, a process restricted to vertebrates (Olichon et al., 2007). While Mgm1p has been identified thanks to its role in mtDNA maintenance, it is only recently that OPA1 has been linked to mtDNA stability. Missense mutations in OPA1 cause accumulation of multiple deletions in skeletal muscle. The syndrome associated to these mutations (DOA-1 plus) is complex, consisting of a combination of dominant optic atrophy, progressive external ophtalmoplegia, peripheral neuropathy, ataxia and deafness (Amati- Bonneau et al., 2008; Hudson et al., 2008). OPA1 is the fifth gene associated with mtDNA “breakage syndrome” together with ANT1, PolG1-2 and TYMP (Spinazzola et al., 2009). In this thesis we show for the first time that specific OPA1 isoforms associated to exon 4b are important for mtDNA stability, by anchoring the nucleoids to the inner mitochondrial membrane. Our results clearly demonstrate that OPA1 isoforms including exon 4b are intimately associated to the maintenance of the mitochondrial genome, as their silencing leads to mtDNA depletion. The mechanism leading to mtDNA loss is associated with replication inhibition in cells where exon 4b containing isoforms were down-regulated. Furthermore silencing of exon 4b associated isoforms is responsible for alteration in mtDNA-nucleoids distribution in the mitochondrial network. In this study it was evidenced that OPA1 exon 4b isoform is cleaved to provide a 10kd peptide embedded in the inner membrane by a second transmembrane domain, that seems to be crucial for mitochondrial genome maintenance and does correspond to the second transmembrane domain of the yeasts orthologue encoded by MGM1 or Msp1, which is also mandatory for this process (Diot et al., 2009; Herlan et al., 2003). Furthermore in this thesis we show that the NT-OPA1-exon 4b peptide co-immuno-precipitates with mtDNA and specifically interacts with two major components of the mitochondrial nucleoids: the polymerase gamma and Tfam. Thus, from these experiments the conclusion is that NT-OPA1- exon 4b peptide contributes to the nucleoid anchoring in the inner mitochondrial membrane, a process that is required for the initiation of mtDNA replication and for the distribution of nucleoids along the network. These data provide new crucial insights in understanding the mechanism involved in maintenance of mtDNA integrity, because they clearly demonstrate that, besides genes implicated in mtDNA replications (i.e. polymerase gamma, Tfam, twinkle and genes involved in the nucleotide pool metabolism), OPA1 and mitochondrial membrane dynamics play also an important role. Noticeably, the effect on mtDNA is different depending on the specific OPA1 isoforms down-regulated, suggesting the involvement of two different combined mechanisms. Over two hundred OPA1 mutations, spread throughout the coding region of the gene, have been described to date, including substitutions, deletions or insertions. Some mutations are predicted to generate a truncated protein inducing haploinsufficiency, whereas the missense nucleotide substitutions result in aminoacidic changes which affect conserved positions of the OPA1 protein. So far, the functional consequences of OPA1 mutations in cells from DOA patients are poorly understood. Phosphorus MR spectroscopy in patients with the c.2708delTTAG deletion revealed a defect in oxidative phosphorylation in muscles (Lodi et al., 2004). An energetic impairment has been also show in fibroblasts with the severe OPA1 R445H mutation (Amati-Bonneau et al., 2005). It has been previously reported by our group that OPA1 mutations leading to haploinsufficiency are associated in fibroblasts to an oxidative phosphorylation dysfunction, mainly involving the respiratory complex I (Zanna et al., 2008). In this study we have evaluated the energetic efficiency of a panel of skin fibroblasts derived from DOA patients, five fibroblast cell lines with OPA1 mutations causing haploinsufficiency (DOA-H) and two cell lines bearing mis-sense aminoacidic substitutions (DOA-AA), and compared with control fibroblasts. Although both types of DOA fibroblasts maintained a similar ATP content when incubated in a glucose-free medium, i.e. when forced to utilize the oxidative phosphorylation only to produce ATP, the mitochondrial ATP synthesis through complex I, measured in digitonin-permeabilized cells, was significantly reduced in cells with OPA1 haploinsufficiency only, whereas it was similar to controls in cells with the missense substitutions. Furthermore, evaluation of the mitochondrial membrane potential (DYm) in the two fibroblast lines DOA-AA and in two DOA-H fibroblasts, namely those bearing the c.2819-2A>C mutation and the c.2708delTTAG microdeletion, revealed an anomalous depolarizing response to oligomycin in DOA-H cell lines only. This finding clearly supports the hypothesis that these mutations cause a significant alteration in the respiratory chain function, which can be unmasked only when the operation of the ATP synthase is prevented. Noticeably, oligomycin-induced depolarization in these cells was almost completely prevented by preincubation with cyclosporin A, a well known inhibitor of the permeability transition pore (PTP). This results is very important because it suggests for the first time that the voltage threshold for PTP opening is altered in DOA-H fibroblasts. Although this issue has not yet been addressed in the present study, several are the mechanisms that have been proposed to lead to PTP deregulation, including in particular increased reactive oxygen species production and alteration of Ca2+ homeostasis, whose role in DOA fibroblasts PTP opening is currently under investigation. Identification of the mechanisms leading to altered threshold for PTP regulation will help our understanding of the pathophysiology of DOA, but also provide a strategy for therapeutic intervention.
Resumo:
Leber’s hereditary optic neuropathy (LHON) and Autosomal Dominant Optic Atrophy (ADOA) are the two most common inherited optic neuropathies and both are the result of mitochondrial dysfunctions. Despite the primary mutations causing these disorders are different, being an mtDNA mutation in subunits of complex I in LHON and defects in the nuclear gene encoding the mitochondrial protein OPA1 in ADOA, both pathologies share some peculiar features, such a variable penetrance and tissue-specificity of the pathological processes. Probably, one of the most interesting and unclear aspect of LHON is the variable penetrance. This phenomenon is common in LHON families, most of them being homoplasmic mutant. Inter-family variability of penetrance may be caused by nuclear or mitochondrial ‘secondary’ genetic determinants or other predisposing triggering factors. We identified a compensatory mechanism in LHON patients, able to distinguish affected individuals from unaffected mutation carriers. In fact, carrier individuals resulted more efficient than affected subjects in increasing the mitochondrial biogenesis to compensate for the energetic defect. Thus, the activation of the mitochondrial biogenesis may be a crucial factor in modulating penetrance, determining the fate of subjects harbouring LHON mutations. Furthermore, mtDNA content can be used as a molecular biomarker which, for the first time, clearly differentiates LHON affected from LHON carrier individuals, providing a valid mechanism that may be exploited for development of therapeutic strategies. Although the mitochondrial biogenesis gained a relevant role in LHON pathogenesis, we failed to identify a genetic modifying factor for the variable penetrance in a set of candidate genes involved in the regulation of this process. A more systematic high-throughput approach will be necessary to select the genetic variants responsible for the different efficiency in activating mitochondrial biogenesis. A genetic modifying factor was instead identified in the MnSOD gene. The SNP Ala16Val in this gene seems to modulate LHON penetrance, since the Ala allele in this position significantly predisposes to be affected. Thus, we propose that high MnSOD activity in mitochondria of LHON subjects may produce an overload of H2O2 for the antioxidant machinery, leading to release from mitochondria of this radical and promoting a severe cell damage and death ADOA is due to mutation in the OPA1 gene in the large majority of cases. The causative nuclear defects in the remaining families with DOA have not been identified yet, but a small number of families have been mapped to other chromosomal loci (OPA3, OPA4, OPA5, OPA7, OPA8). Recently, a form of DOA and premature cataract (ADOAC) has been associated to pathogenic mutations of the OPA3 gene, encoding a mitochondrial protein. In the last year OPA3 has been investigated by two different groups, but a clear function for this protein and the pathogenic mechanism leading to ADOAC are still unclear. Our study on OPA3 provides new information about the pattern of expression of the two isoforms OPA3V1 and OPA3V2, and, moreover, suggests that OPA3 may have a different function in mitochondria from OPA1, the major site for ADOA mutations. In fact, based on our results, we propose that OPA3 is not involved in the mitochondrial fusion process, but, on the contrary, it may regulate mitochondrial fission. Furthermore, at difference from OPA1, we excluded a role for OPA3 in mtDNA maintenance and we failed to identify a direct interaction between OPA3 and OPA1. Considering the results from overexpression and silencing of OPA3, we can conclude that the overexpression has more drastic consequences on the cells than silencing, suggesting that OPA3 may cause optic atrophy via a gain-of-function mechanism. These data provide a new starting point for future investigations aimed at identifying the exact function of OPA3 and the pathogenic mechanism causing ADOAC.
Resumo:
This doctoral dissertation aims to establish fiber-optic technologies overcoming the limiting issues of data communications in indoor environments. Specific applications are broadband mobile distribution in different in-building scenarios and high-speed digital transmission over short-range wired optical systems. Two key enabling technologies are considered: Radio over Fiber (RoF) techniques over standard silica fibers for distributed antenna systems (DAS) and plastic optical fibers (POFs) for short-range communications. Hence, the objectives and achievements of this thesis are related to the application of RoF and POF technologies in different in-building scenarios. On one hand, a theoretical and experimental analysis combined with demonstration activities has been performed on cost-effective RoF systems. An extensive modeling on modal noise impact both on linear and non-linear characteristics of RoF link over silica multimode fiber has been performed to achieve link design rules for an optimum choice of the transmitter, receiver and launching technique. A successful transmission of Long Term Evolution (LTE) mobile signals on the resulting optimized RoF system over silica multimode fiber employing a Fabry-Perot LD, central launch technique and a photodiode with a built-in ball lens was demonstrated up to 525m with performances well compliant with standard requirements. On the other hand, digital signal processing techniques to overcome the bandwidth limitation of POF have been investigated. An uncoded net bit-rate of 5.15Gbit/s was obtained on a 50m long POF link employing an eye-safe transmitter, a silicon photodiode, and DMT modulation with bit and power loading algorithm. With the insertion of 3x2N quadrature amplitude modulation constellation formats, an uncoded net-bit-rate of 5.4Gbit/s was obtained on a 50 m long POF link employing an eye-safe transmitter and a silicon avalanche photodiode. Moreover, simultaneous transmission of baseband 2Gbit/s with DMT and 200Mbit/s with an ultra-wideband radio signal has been validated over a 50m long POF link.
Resumo:
The present work takes into account three posterior parietal areas, V6, V6A, and PEc, all operating on different subsets of signals (visual, somatic, motor). The work focuses on the study of their functional properties, to better understand their respective contribution in the neuronal circuits that make possible the interactions between subject and external environment. In the caudalmost pole of parietal lobe there is area V6. Functional data suggest that this area is related to the encoding of both objects motion and ego-motion. However, the sensitivity of V6 neurons to optic flow stimulations has been tested only in human fMRI experiments. Here we addressed this issue by applying on monkey the same experimental protocol used in human studies. The visual stimulation obtained with the Flow Fields stimulus was the most effective and powerful to activate area V6 in monkey, further strengthening this homology between the two primates. The neighboring areas, V6A and PEc, show different cytoarchitecture and connectivity profiles, but are both involved in the control of reaches. We studied the sensory responses present in these areas, and directly compared these.. We also studied the motor related discharges of PEc neurons during reaching movements in 3D space comparing also the direction and depth tuning of PEc cells with those of V6A. The results show that area PEc and V6A share several functional properties. Area PEc, unlike V6A, contains a richer and more complex somatosensory input, and a poorer, although complex visual one. Differences emerged also comparing the motor-related properties for reaches in depth: the incidence of depth modulations in PEc and the temporal pattern of modulation for depth and direction allow to delineate a trend among the two parietal visuomotor areas.
Resumo:
The study of optic flow on postural control may explain how self-motion perception contributes to postural stability in young males and females and how such function changes in the old falls risk population. Study I: The aim was to examine the optic flow effect on postural control in young people (n=24), using stabilometry and surface-electromyography. Subjects viewed expansion and contraction optic flow stimuli which were presented full field, in the foveral or in the peripheral visual field. Results showed that optic flow stimulation causes an asymmetry in postural balance and a different lateralization of postural control in men and women. Gender differences evoked by optic flow were found both in the muscle activity and in the prevalent direction of oscillation. The COP spatial variability was reduced during the view of peripheral stimuli which evoked a clustered prevalent direction of oscillation, while foveal and random stimuli induced non-distributed directions. Study II was aimed at investigating the age-related mechanisms of postural stability during the view of optic flow stimuli in young (n=17) and old (n=19) people, using stabilometry and kinematic. Results showed that old people showed a greater effort to maintain posture during the view of optic flow stimuli than the young. Elderly seems to use the head stabilization on trunk strategy. Visual stimuli evoke an excitatory input on postural muscles, but the stimulus structure produces different postural effects. Peripheral optic flow stabilizes postural sway, while random and foveal stimuli provoke larger sway variability similar to those evoked in baseline. Postural control uses different mechanisms within each leg to produce the appropriate postural response to interact with extrapersonal environment. Ageing reduce the effortlessness to stabilize posture during optic flow, suggesting a neuronal processing decline associated with difficulty integrating multi-sensory information of self-motion perception and increasing risk of falls.
Resumo:
Nocturnal Frontal Lobe Epilepsy (NFLE) is characterized by onset during infancy or childhood with persistence in adulthood, family history of similar nocturnal episodes simulating non-REM parasomnias (sleep terrors or sleepwalking), general absence of morphological substrates, often by normal interictal electroencephalographical recordings (EEGs) during wakefulness. A family history of epilepsy may be present with Mendelian autosomal dominant inheritance has been described in some families. Recent studies indicate the involvement of neuronal nicotinic acetylcholine receptors (nAChRs) in the molecular mechanisms of NFLE. Mutations in the genes encoding for the α4 (CHRNA4) and ß2 (CHRNB2) subunits of the nAChR induce changes in the biophysical properties of nAChR, resulting generally in a “gain of function”. Preclinical studies report that activation of a nuclear receptor called type peroxisome proliferator-activated receptor (PPAR-α) by endogenous molecules or by medications (e.g. fenofibrate) reduces the activity of the nAChR and, therefore, may decrease the frequency of seizures. Thus, we hypothesize that negative modulation of nAChRs might represent a therapeutic strategy to be explored for pharmacological treatment of this form of epilepsy, which only partially responds to conventional antiepileptic drugs. In fact, carbamazepine, the current medication for NFLE, abolishes the seizures only in one third of the patients. The aim of the project is: 1)_to verify the clinical efficacy of adjunctive therapy with fenofibrate in pharmacoresistant NFLE and ADNFLE patients; focousing on the analysis of the polysomnographic action of the PPAR- agonist (fenofibrate). 2)_to demonstrate the subtended mechanism of efficacy by means of electrophysiological and behavioral experiments in an animal model of the disease: particularly, transgenic mice carrying the mutation in the nAChR 4 subunit (Chrna4S252F) homologous to that found in the humans. Given that a PPAR-α agonist, FENOFIBRATE, already clinically utilized for lipid metabolism disorders, provides a promising therapeutic avenue in the treatment of NFLE\ADNFLE.