21 resultados para oncogenic osteomalacia

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcription is controlled by promoter-selective transcriptional factors (TFs), which bind to cis-regulatory enhancers elements, termed hormone response elements (HREs), in a specific subset of genes. Regulation by these factors involves either the recruitment of coactivators or corepressors and direct interaction with the basal transcriptional machinery (1). Hormone-activated nuclear receptors (NRs) are well characterized transcriptional factors (2) that bind to the promoters of their target genes and recruit primary and secondary coactivator proteins which possess many enzymatic activities required for gene expression (1,3,4). In the present study, using single-cell high-resolution fluorescent microscopy and high throughput microscopy (HTM) coupled to computational imaging analysis, we investigated transcriptional regulation controlled by the estrogen receptor alpha (ERalpha), in terms of large scale chromatin remodeling and interaction with the associated coactivator SRC-3 (Steroid Receptor Coactivator-3), a member of p160 family (28) primary coactivators. ERalpha is a steroid-dependent transcriptional factor (16) that belongs to the NRs superfamily (2,3) and, in response to the hormone 17-ß estradiol (E2), regulates transcription of distinct target genes involved in development, puberty, and homeostasis (8,16). ERalpha spends most of its lifetime in the nucleus and undergoes a rapid (within minutes) intranuclear redistribution following the addition of either agonist or antagonist (17,18,19). We designed a HeLa cell line (PRL-HeLa), engineered with a chromosomeintegrated reporter gene array (PRL-array) containing multicopy hormone response-binding elements for ERalpha that are derived from the physiological enhancer/promoter region of the prolactin gene. Following GFP-ER transfection of PRL-HeLa cells, we were able to observe in situ ligand dependent (i) recruitment to the array of the receptor and associated coregulators, (ii) chromatin remodeling, and (iii) direct transcriptional readout of the reporter gene. Addition of E2 causes a visible opening (decondensation) of the PRL-array, colocalization of RNA Polymerase II, and transcriptional readout of the reporter gene, detected by mRNA FISH. On the contrary, when cells were treated with an ERalpha antagonist (Tamoxifen or ICI), a dramatic condensation of the PRL-array was observed, displacement of RNA Polymerase II, and complete decreasing in the transcriptional FISH signal. All p160 family coactivators (28) colocalize with ERalpha at the PRL-array. Steroid Receptor Coactivator-3 (SRC-3/AIB1/ACTR/pCIP/RAC3/TRAM1) is a p160 family member and a known oncogenic protein (4,34). SRC-3 is regulated by a variety of posttranslational modifications, including methylation, phosphorylation, acetylation, ubiquitination and sumoylation (4,35). These events have been shown to be important for its interaction with other coactivator proteins and NRs and for its oncogenic potential (37,39). A number of extracellular signaling molecules, like steroid hormones, growth factors and cytokines, induce SRC-3 phosphorylation (40). These actions are mediated by a wide range of kinases, including extracellular-regulated kinase 1 and 2 (ERK1-2), c-Jun N-terminal kinase, p38 MAPK, and IkB kinases (IKKs) (41,42,43). Here, we report SRC-3 to be a nucleocytoplasmic shuttling protein, whose cellular localization is regulated by phosphorylation and interaction with ERalpha. Using a combination of high throughput and fluorescence microscopy, we show that both chemical inhibition (with U0126) and siRNA downregulation of the MAP/ERK1/2 kinase (MEK1/2) pathway induce a cytoplasmic shift in SRC-3 localization, whereas stimulation by EGF signaling enhances its nuclear localization by inducing phosphorylation at T24, S857, and S860, known partecipants in the regulation of SRC-3 activity (39). Accordingly, the cytoplasmic localization of a non-phosphorylatable SRC-3 mutant further supports these results. In the presence of ERalpha, U0126 also dramatically reduces: hormone-dependent colocalization of ERalpha and SRC-3 in the nucleus; formation of ER-SRC-3 coimmunoprecipitation complex in cell lysates; localization of SRC-3 at the ER-targeted prolactin promoter array (PRL-array) and transcriptional activity. Finally, we show that SRC-3 can also function as a cotransporter, facilitating the nuclear-cytoplasmic shuttling of estrogen receptor. While a wealth of studies have revealed the molecular functions of NRs and coregulators, there is a paucity of data on how these functions are spatiotemporally organized in the cellular context. Technically and conceptually, our findings have a new impact upon evaluating gene transcriptional control and mechanisms of action of gene regulators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alzheimer's disease (AD) and cancer represent two of the main causes of death worldwide. They are complex multifactorial diseases and several biochemical targets have been recognized to play a fundamental role in their development. Basing on their complex nature, a promising therapeutical approach could be represented by the so-called "Multi-Target-Directed Ligand" approach. This new strategy is based on the assumption that a single molecule could hit several targets responsible for the onset and/or progression of the pathology. In particular in AD, most currently prescribed drugs aim to increase the level of acetylcholine in the brain by inhibiting the enzyme acetylcholinesterase (AChE). However, clinical experience shows that AChE inhibition is a palliative treatment, and the simple modulation of a single target does not address AD aetiology. Research into newer and more potent anti-AD agents is thus focused on compounds whose properties go beyond AChE inhibition (such as inhibition of the enzyme β-secretase and inhibition of the aggregation of beta-amyloid). Therefore, the MTDL strategy seems a more appropriate approach for addressing the complexity of AD and may provide new drugs for tackling its multifactorial nature. In this thesis, it is described the design of new MTDLs able to tackle the multifactorial nature of AD. Such new MTDLs designed are less flexible analogues of Caproctamine, one of the first MTDL owing biological properties useful for the AD treatment. These new compounds are able to inhibit the enzymes AChE, beta-secretase and to inhibit both AChE-induced and self-induced beta-amyloid aggregation. In particular, the most potent compound of the series is able to inhibit AChE in subnanomolar range, to inhibit β-secretase in micromolar concentration and to inhibit both AChE-induced and self-induced beta-amyloid aggregation in micromolar concentration. Cancer, as AD, is a very complex pathology and many different therapeutical approaches are currently use for the treatment of such pathology. However, due to its multifactorial nature the MTDL approach could be, in principle, apply also to this pathology. Aim of this thesis has been the development of new molecules owing different structural motifs able to simultaneously interact with some of the multitude of targets responsible for the pathology. The designed compounds displayed cytotoxic activity in different cancer cell lines. In particular, the most potent compounds of the series have been further evaluated and they were able to bind DNA resulting 100-fold more potent than the reference compound Mitonafide. Furthermore, these compounds were able to trigger apoptosis through caspases activation and to inhibit PIN1 (preliminary result). This last protein is a very promising target because it is overexpressed in many human cancers, it functions as critical catalyst for multiple oncogenic pathways and in several cancer cell lines depletion of PIN1 determines arrest of mitosis followed by apoptosis induction. In conclusion, this study may represent a promising starting pint for the development of new MTDLs hopefully useful for cancer and AD treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Translational control has a direct impact on cancer development and progression. Quantitative and qualitative changes of cap-dependent translation initiation contribute to neoplastic transformation and progression. However, the idea that “alternative” mechanisms of translation initiation, such as IRES-dependent translation, can be involved in the tumorigenesis is emerging. Because the relevance of this kind of translation initiation in cancer progression is not so well clarified, the purpose of my work was to study the impact of IRES-dependent mRNA translation on tumourigenesis and cancer progression with particular regard for breast cancer. The data obtained clarify the function of cap-independent translation in cancer. Particularly they suggested that the deregulation of IRES-dependent translation can be considered a sort of pro-oncogenic stimulus characterized by the inhibition of the expression of some proteins that block cell growth and proliferation and by the over expression of other proteins that contributed to cell survival. In addition, under stress condition, such as a hypoxia, in immortalized epithelial cell lines, changes in cap-independent translation are associated with an induction of expression of stem cell markers, and with the selection of a sub group of cells that have an increased ability to self-renewing and therefore in the acquisition of a more aggressive phenotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neoplastic overgrowth depends on the cooperation of several mutations ultimately leading to major rearrangements in cellular behaviour. The molecular crosstalk occurring between precancerous and normal cells strongly influences the early steps of the tumourigenic process as well as later stages of the disease. Precancerous cells are often removed by cell death from normal tissues but the mechanisms responsible for such fundamental safeguard processes remain in part elusive. To gain insight into these phenomena I took advantage of the clonal analysis methods available in Drosophila for studying the phenotypes due to loss of function of the neoplastic tumour suppressor lethal giant larvae (lgl). I found that lgl mutant cells growing in wild-type imaginal wing discs are subject to the phenomenon of cell competition and are eliminated by JNK-dependent cell death because they express very low levels of dMyc oncoprotein compared to those in the surrounding tissue. Indeed, in non-competitive backgrounds lgl mutant clones are able to overgrow and upregulate dMyc, overwhelming the neighbouring tissue and forming tumourous masses that display several cancer hallmarks. These phenotypes are completely abolished by reducing dMyc abundance within mutant cells while increasing it in lgl clones growing in a competitive context re-establishes their tumourigenic potential. Similarly, the neoplastic growth observed upon the oncogenic cooperation between lgl mutation and activated Ras/Raf/MAPK signalling was found to be characterised by and dependent on the ability of cancerous cells to upregulate dMyc with respect to the adjacent normal tissue, through both transcriptional and post-transcriptional mechanisms, thereby confirming its key role in lgl-induced tumourigenesis. These results provide first evidence that the dMyc oncoprotein is required in lgl mutant tissue to promote invasive overgrowth in developing and adult epithelial tissues and that dMyc abundance inside versus outside lgl mutant clones plays a key role in driving neoplastic overgrowth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Notch signalling is a cellular pathway that results conserved from Drosophila to Homo sapiens controlling a wide range of cellular processes in development and in differentiated organs. It induces cell proliferation or differentiation, increased survival or apoptosis, and it is involved in stemness maintainance. These functions are conserved, but exerted with a high tissue and cellular context specificity. Signalling activation determs nuclear translocation of the receptor’s cytoplasmic domain and activation of target genes transcription. As many developmental pathway, Notch deregulation is involved in cancer, leading to oncogenic or tumour suppressive role depending on the functions exerted in normal tissue. Notch1 and Notch3 resulted aberrantly expressed in human hepatocellular carcinoma (HCC) that is the more frequent tumour of the liver and the sixth most common tumour worldwide. This thesis has the aim to investigate the role of the signalling in HCC, with particular attention to dissect common and uncommon regulatory pathways between Notch1 and Notch3 and to define the role of the signalling in HCC. Nocth1 and Notch3 were analysed on their regulation on Hes1 target and involvement in cell cycle control. They showed to regulate CDKN1C/p57kip2 expression through Hes1 target. CDKN1C/p57kip2 induces not only cell cycle arrest, but also senescence in HCC cell lines. Moreover, the involvement of Notch1 in cancer progression and epithelial to mesenchymal transition was investigated. Notch1 showed to induce invasion of HCC, regulating EMT and E- Cadherin expression. Moreover, Notch3 showed specific regulation on p53 at post translational levels. In vitro and ex vivo analysis on HCC samples suggests a complex role of both receptors in regulate HCC, with an oncogenic role but also showing tumour suppressive effects, suggesting a complex and deep involvement of this signalling in HCC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’infiammazione cronica è un fattore di rischio di insorgenza del cancro, e la citochina infiammatoria IL-6 gioca un ruolo importante nella tumorigenesi. In questo studio abbiamo dimostrato che L’IL-6 down-regola l'espressione e l'attività di p53. In linee cellulari umane, IL-6 stimola la trascrizione dell’rRNA mediante espressione della proteina c-myc a livello post-trascrizionale in un meccanismo p38MAPK-dipendente. L'up-regolazione della biogenesi ribosomiale riduce l'espressione di p53 attraverso l'attivazione della via della proteina ribosomale-MDM2. La down-regolazione di p53 produce l’acquisizione di modifiche fenotipiche e funzionali caratteristiche della epitelio mesenchimale di transizione, un processo associato a trasformazione maligna e progressione tumorale. I nostri dati mostrano che questi cambiamenti avvengono anche nelle cellule epiteliali del colon di pazienti affetti da colite ulcerosa, un esempio rappresentativo di una infiammazione cronica soggetta a trasformazione neoplastica, che scompaiono dopo trattamento con farmaci antinfiammatori. Questi risultati svelano un nuovo effetto oncogenico indotto dall’IL-6 che può contribuire notevolmente ad aumentare il rischio di sviluppare il cancro non solo in pazienti con infiammazioni croniche, ma anche in quei pazienti con condizioni patologiche caratterizzate da elevato livello di IL-6 nel plasma, quali l'obesità e e il diabete mellito di tipo 2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in the gastrointestinal tract. This work considers the pharmacological response in GIST patients treated with imatinib by two different angles: the genetic and somatic point of view. We analyzed polymorphisms influence on treatment outcome, keeping in consideration SNPs in genes involved in drug transport and folate pathway. Naturally, all these intriguing results cannot be considered as the only main mechanism in imatinib response. GIST mainly depends by oncogenic gain of function mutations in tyrosin kinase receptor genes, KIT or PDGFRA, and the mutational status of these two genes or acquisition of secondary mutation is considered the main player in GIST development and progression. To this purpose we analyzed the secondary mutations to better understand how these are involved in imatinib resistance. In our analysis we considered both imatinib and the second line treatment, sunitinib, in a subset of progressive patients. KIT/PDGFRA mutation analysis is an important tool for physicians, as specific mutations may guide therapeutic choices. Currently, the only adaptations in treatment strategy include imatinib starting dose of 800 mg/daily in KIT exon-9-mutated GISTs. In the attempt to individualize treatment, genetic polymorphisms represent a novelty in the definition of biomarkers of imatinib response in addition to the use of tumor genotype. Accumulating data indicate a contributing role of pharmacokinetics in imatinib efficacy, as well as initial response, time to progression and acquired resistance. At the same time it is becoming evident that genetic host factors may contribute to the observed pharmacokinetic inter-patient variability. Genetic polymorphisms in transporters and metabolism may affect the activity or stability of the encoded enzymes. Thus, integrating pharmacogenetic data of imatinib transporters and metabolizing genes, whose interplay has yet to be fully unraveled, has the potential to provide further insight into imatinib response/resistance mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CD99, glicoproteina di membrana codificata dal gene MIC2, è coinvolta in numerosi processi cellulari, inclusi adesione, migrazione, apoptosi, differenziamento e regolazione del trafficking intracellulare di proteine, in condizioni fisiologiche e patologiche. Nell’osteosarcoma risulta scarsamente espressa ed ha ruolo oncosoppressivo. L’isoforma completa (CD99wt) e l’isoforma tronca (CD99sh), deleta di una porzione del dominio intracellulare, influenzano in modo opposto la malignità tumorale. In questo studio, comparando cellule di osteosarcoma caratterizzate da differenti capacità metastatiche e diversa espressione di CD99, abbiamo valutato la modulazione dei contatti cellula-cellula, la riorganizzazione del citoscheletro di actina e la modulazione delle vie di segnalazione a valle del CD99, al fine di identificare i meccanismi molecolari regolati da questa molecola e responsabili del comportamento migratorio e invasivo delle cellule di osteosarcoma. L'espressione forzata di CD99wt induce il reclutamento di N-caderina e β-catenina a livello delle giunzioni aderenti ed inibisce l'espressione di molecole cruciali nel processo di rimodellamento del citoscheletro di actina, come ACTR2, ARPC1A, Rho-associated, coiled–coil-containing protein kinase 2 (ROCK2), nonché di ezrina, membro della famiglia ezrin/radixin/moesin e chiaramente associata con la progressione tumorale e la metastatizzazione dell’OS. Gli studi funzionali identificano ROCK2 come mediatore fondamentale nella regolazione della migrazione e della diffusione metastatica dell’osteosarcoma. Mantenendo cSRC in una conformazione inattiva, CD99wt inibisce la segnalazione mediata da ROCK2 inducendo una diminuzione dell’ezrina a livello della membrana accompagnata dalla traslocazione in membrana di N-caderina e β-catenina, principali ponti molecolari per il citoscheletro di actina. La ri-espressione di CD99wt, generalmente presente negli osteoblasti, ma perso nelle cellule di osteosarcoma, attraverso l'inibizione dell'attività di cSrc e ROCK2, aumenta la forza di contatto e riattiva i segnali anti-migratori ostacolando l’azione pro-migratoria, altrimenti dominante, dell’ezrina nell’osteosarcoma. Abbiamo infine valutato la funzione di ROCK2 nel sarcoma di Ewing: nonostante il ruolo oncogenico esercitato da CD99, ROCK2 guida la migrazione cellulare anche in questa neoplasia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results reported in this Thesis contribute to the comprehension of the complicated world of “redox biology”. ROS regulate signalling pathways both in physiological responses and in pathogenesis and progression of diseases. In cancer cells, the increase in ROS generation from metabolic abnormalities and oncogenic signalling may trigger a redox adaptation response, leading to an up-regulation of antioxidant capacity in order to maintain the ROS level below the toxic threshold. Thus, cancer cells would be more dependent on the antioxidant system and more vulnerable to further oxidative stress induced by exogenous ROS-generating agents or compounds that inhibit the antioxidant system. Results here reported indicate that the development of new drugs targeting specific Nox isoforms, responsible for intracellular ROS generation, or AQP isoforms, involved in the transport of extracellular H2O2 toward intracellular targets, might be an interesting novel anti-leukaemia strategy. Furthermore, also the use of CSD peptide, which simulate the VEGFR-2 segregation into caveolae in the inactive form, might be a strategy to stop the cellular response to VEGF signalling. As above stated, in the understanding of the redox biology, it is also important to identify and distinguish the molecular effectors that maintain normal biological and physiological responses, such as agents that stimulate our adaptation systems and elevate our endogenous antioxidant defences or other protective systems. Data here reported indicate that the nutraceutical compound sulforaphane and the Klotho protein are able to stimulate the HO-1 and Prx-1 expression, as well as the GSH levels, confirming their antioxidant and protective role. Finally, results here reported demonstrated that Stevia extracts are involved in insulin regulated glucose metabolism, suggesting that the use of these compounds goes beyond their sweetening power and may also offer therapeutic benefits hence improving the quality of life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tumours are characterized by a metabolic rewiring that helps transformed cells to survive in harsh conditions. The endogenous inhibitor of the ATP-synthase IF1 is overexpressed in several tumours and it has been proposed to drive metabolic adaptation. In ischemic normal-cells, IF1 acts limiting the ATP consumption by the reverse activity of the ATP-synthase, activated by ΔΨm collapse. Conversely, IF1 role in cancer cells is still unclear. It has been proposed that IF1 favours cancer survival by preventing energy dissipation in low oxygen availability, a frequent condition in solid tumours. Our previous data proved that in cancer cells hypoxia does not abolish ΔΨm, avoiding the ATP-synthase reversal and IF1 activation. In this study, we investigated the bioenergetics of cancer cells in conditions mimicking anoxia to evaluate the possible role of IF1. Data obtained indicate that also in cancer cells the ΔΨm collapse induces the ATP-synthase reversal and its inhibition by IF1. Moreover, we demonstrated that upon uncoupling conditions, IF1 favours cancer cells growth preserving ATP levels and energy charge. We also showed that in these conditions IF1 favours the mitochondrial mass renewal, a mechanism we proposed driving apoptosis-resistance. Cancer adaptability is also associated with the onset of therapy resistance, the major challenge for melanoma treatment. Recent studies demonstrated that miRNAs dysregulation drive melanoma progression and drug-resistance by regulating tumour-suppressor and oncogenes. In this context, we attempted to identify and characterize miRNAs driving resistance to vemurafenib in patient-derived metastatic melanoma cells BRAFV600E-mutated. Our results highlighted that several oncogenic pathways are altered in resistant cells, indicating the complexity of both drug-resistance phenomena and miRNAs action. Profiling analysis identified a group of dysregulated miRNAs conserved in vemurafenib-resistance cells from distinct patients, suggesting that they ubiquitously drive drug-resistance. Functional studies performed with a first miRNA confirmed its pivotal role in resistance towards vemurafenib.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several studies have shown epidemiologic, clinical, immune-histochemical and molecular differences among esophageal adenocarcinomas (EAC). Since pathogenesis and biology of this tumor are far to be well defined, our study aimed to examine intra- and inter-tumor heterogeneity and to solve crucial controversies through different molecular approaches. Target sequencing was performed for sorted cancer subpopulations from formalin embedded material obtained from 38 EACs, not treated with neoadjuvant therapy. 35 out 38 cases carried at least one somatic mutation, not present in the corresponding sorted stromal cells. 73.7% of cases carried mutations in TP53 and 10.5% in CDKN2A. Mutations in other genes occurred at lower frequency, including HNF1A, not previously associated with EAC. Sorting allowed us to isolate clones with different mutational loads and/or additional copy number amplifications, confirming the high intra-tumor heterogeneity of these cancers. In our cohort TP53 gene abnormalities correlated with a better survival (P = 0.028); conversely, loss of SMAD4 protein expression was associated with a higher recurrence rate (P = 0.015). Shifting the focus on the epigenetic characterization of EAC, miR-221 and miR-483-3p resulted upregulated from the MicroRNA Array card analysis and confirmed with further testing. The up-regulation of both miRNAs correlated with clinical outcomes, in particular with a reduced cancer-specific survival (miR483-3p P=0.0293; miR221 P=0.0059). In vitro analyses demonstrated an increase for miR-483-3p (fold-change=2.7) that appear to be inversely correlated with SMAD4 expression in FLO-1 cell-line. In conclusion, selective sorting allowed to define the real mutation status and to isolate different cancer subclones. MiRNA expression analysis revealed a significant up-regulation of miR-221 and miR-483-3p, which correlated with worst prognosis, implying that they can be considered oncogenic factors in EAC. Therefore, cell sorting technologies, coupled with next generation sequencing, and the analysis of microRNA profiles seem to be promising strategies to guide treatment and help classify cancer prognosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MYCN amplification is a genetic hallmark of the childhood tumour neuroblastoma. MYCN-MAX dimers activate the expression of genes promoting cell proliferation. Moreover, MYCN seems to transcriptionally repress cell differentiation even in absence of MAX. We adopted the Drosophila eye as model to investigate the effect of high MYC to MAX expression ratio on cells. We found that dMyc overexpression in eye cell precursors inhibits cell differentiation and induces the ectopic expression of Antennapedia (the wing Hox gene). The further increase of MYC/MAX ratio results in an eye-to-wing homeotic transformation. Notably, dMyc overexpression phenotype is suppressed by low levels of transcriptional co-repressors and MYCN associates to the promoter of Deformed (the eye Hox gene) in proximity to repressive sites. Hence, we envisage that, in presence of high MYC/MAX ratio, the “free MYC” might inhibit Deformed expression, leading in turn to the ectopic expression of Antennapedia. This suggests that MYCN might reinforce its oncogenic role by affecting the physiological homeotic program. Furthermore, poor neuroblastoma outcome associates with a high level of the MRP1 protein, encoded by the ABCC1 gene and known to promote drug efflux in cancer cells. Intriguingly, this correlation persists regardless of chemotherapy and ABCC1 overexpression enhances neuroblastoma cell motility. We found that Drosophila dMRP contributes to the adhesion between the dorsal and ventral epithelia of the wing by inhibiting the function of integrin receptors, well known regulators of cell adhesion and migration. Besides, integrins play a crucial role during synaptogenesis and ABCC1 locus is included in a copy number variable region of the human genome (16p13.11) involved in neuropsychiatric diseases. Interestingly, we found that the altered dMRP/MRP1 level affects nervous system development in Drosophila embryos. These preliminary findings point out novel ABCC1 functions possibly defining ABCC1 contribution to neuroblastoma and to the pathogenicity of 16p13.11 deletion/duplication

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Glioblastoma multiforme (GBM) is one of the deadliest and most aggressive form of primary brain tumor. Unfortunately, current GBM treatment therapies are not effective in treating GBM patients. They usually experience very poor prognosis with a median survival of approximately 12 months. Only 3-5% survive up to 3 years or more. A large-scale gene profile study revealed that several genes involved in essential cellular processes are altered in GBM, thus, explaining why existing therapies are not effective. The survival of GBM patients depends on understanding the molecular and key signaling events associated with these altered physiological processes in GBM. Phosphoinositides (PI) form just a tiny fraction of the total lipid content in humans, however they are implicated in almost all essential biological processes, such as acting as second messengers in spatio-temporal regulation of cell signaling, cytoskeletal reorganization, cell adhesion, migration, apoptosis, vesicular trafficking, differentiation, cell cycle and post-translational modifications. Interestingly, these essential processes are altered in GBM. More importantly, incoming reports have associated PI metabolism, which is mediated by several PI phosphatases such as SKIP, lipases such as PLCβ1, and other kinases, to regulate GBM associated cellular processes. Even as PLCβ1 and SKIP are involved in regulating aberrant cellular processes in several other cancers, very few studies, of which majority are in-silico-based, have focused on the impact of PLCβ1 and SKIP in GBM. Hence, it is important to employ clinical, in vitro, and in vivo GBM models to define the actual impact of PLCβ1 and SKIP in GBM. AIM: Since studies of PLCβ1 and SKIP in GBM are limited, this study aimed at determining the pathological impact of PI metabolic enzymes, PLCB1 and SKIP, in GBM patient samples, GBM cell line models, and xenograft models for SKIP. Results: For the first time, this study confirmed through qPCR that PLCβ1 gene expression is lower in human GBM patient samples. Moreover, PLCβ1 gene expression inversely correlates with pathological grades of glioma; it decreases as glioma grades increases or worsens. Silencing PLCβ1 in U87MG GBM cells produces a dual impact in GBM by participating in both pro-tumoral and anti-tumoral roles. PLCβ1 knockdown cells were observed to have more migratory abilities, increased cell to extracellular matrix (ECM) adhesion, transition from epithelial phenotype to mesenchymal phenotype through the upregulation of EMT transcription factors Twist1 and Slug, and mesenchymal marker, vimentin. On the other hand, p-Akt and p-mTOR protein expression were downregulated in PLCβ1 knockdown cells. Thus, the oncogenic pathway PI3K/Akt/mTOR pathway is inhibited during PLCβ1 knockdown. Consistently, cell viability in PLCβ1 knockdown cells were significantly decreased compared to controls. As for SKIP, this study demonstrated that about 48% of SKIP colocalizes with nuclear PtdIns(4,5)P2 to nuclear speckles and that SKIP knockdown alters nuclear PtdIns(4,5)P2 in a cell-type dependent manner. In addition, SKIP silencing increased tumor volume and weight in xenografts than controls by reducing apoptosis and increasing viability. All in all, these data confirm that PLCβ1 and SKIP are involved in GBM pathology and a complete understanding of their roles in GBM may be beneficial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zyxin is a phosphoprotein localized at the focal adhesions and on the actin stress fibres, where it regulates the cytoskeleton organization. In addition, zyxin can shift into the nucleus and modulates the gene expression, affecting key cellular processes. Consequently, zyxin is as a crucial factor in the malignancy of several cancers, like Ewing sarcoma (EWS). EWS is a rare tumour of the bones, affecting children and adolescents. The main features of EWS are the presence of a chimeric transcriptional factor, EWS-FLI1 and the high expression of CD99, a glycoprotein necessary for the maintenance of the malignant phenotype. Triggering of CD99 with specific antibodies causes massive cell death, an effect that requires zyxin presence. In EWS zyxin is repressed by EWS-FLI1 and its forced re-expression counteracts the malignant phenotype. In this work we decided to deepen our knowledge on how zyxin affects EWS malignancy. We proved that zyxin is a negative regulator of cell migration, survival and growth in anchorage-independent conditions, confirming the tumour suppressor role of zyxin. Then we focused on the relation between CD99 and zyxin. Loss of function of CD99, by engagement with specific antibodies or use of shRNA, increases zyxin levels and promotes its nuclear translocation. Here, we observed that zyxin impairs the transcriptional activity of the Glioma associated oncogene 1 (Gli1), a member of the Hedgehog signalling pathway, which has a relevant oncogenic function in EWS. To support these evidences, we also reported that the loss of function of CD99 inhibits, trough zyxin mediation, the expression of Gli1 up-regulated target genes, such as NKX2-2, PTCH1 and cyclins, whilst enhances the expression of its down-regulated target GAS1. In conclusion, we presented a more accurate depiction of zyxin role in EWS, which in the future could be further developed in hope to offer new therapeutic approaches.