34 resultados para numerical models

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic resonance imaging (MRI) is today precluded to patients bearing active implantable medical devices AIMDs). The great advantages related to this diagnostic modality, together with the increasing number of people benefiting from implantable devices, in particular pacemakers(PM)and carioverter/defibrillators (ICD), is prompting the scientific community the study the possibility to extend MRI also to implanted patients. The MRI induced specific absorption rate (SAR) and the consequent heating of biological tissues is one of the major concerns that makes patients bearing metallic structures contraindicated for MRI scans. To date, both in-vivo and in-vitro studies have demonstrated the potentially dangerous temperature increase caused by the radiofrequency (RF) field generated during MRI procedures in the tissues surrounding thin metallic implants. On the other side, the technical evolution of MRI scanners and of AIMDs together with published data on the lack of adverse events have reopened the interest in this field and suggest that, under given conditions, MRI can be safely performed also in implanted patients. With a better understanding of the hazards of performing MRI scans on implanted patients as well as the development of MRI safe devices, we may soon enter an era where the ability of this imaging modality may be more widely used to assist in the appropriate diagnosis of patients with devices. In this study both experimental measures and numerical analysis were performed. Aim of the study is to systematically investigate the effects of the MRI RF filed on implantable devices and to identify the elements that play a major role in the induced heating. Furthermore, we aimed at developing a realistic numerical model able to simulate the interactions between an RF coil for MRI and biological tissues implanted with a PM, and to predict the induced SAR as a function of the particular path of the PM lead. The methods developed and validated during the PhD program led to the design of an experimental framework for the accurate measure of PM lead heating induced by MRI systems. In addition, numerical models based on Finite-Differences Time-Domain (FDTD) simulations were validated to obtain a general tool for investigating the large number of parameters and factors involved in this complex phenomenon. The results obtained demonstrated that the MRI induced heating on metallic implants is a real risk that represents a contraindication in extending MRI scans also to patient bearing a PM, an ICD, or other thin metallic objects. On the other side, both experimental data and numerical results show that, under particular conditions, MRI procedures might be consider reasonably safe also for an implanted patient. The complexity and the large number of variables involved, make difficult to define a unique set of such conditions: when the benefits of a MRI investigation cannot be obtained using other imaging techniques, the possibility to perform the scan should not be immediately excluded, but some considerations are always needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this Thesis is to investigate the effect of heterogeneities within the subducting plate on the dynamics of subduction. In particular, I study the motion of the trench for oceanic and continental subduction, first, separately, and, then, together in the same system to understand how they interact. The understanding of these features is fundamental to reconstruct the evolution of complex subduction zones, such as the Central Mediterranean. For this purpose, I developed 2D and 3D numerical models of oceanic and continental subduction where the rheological, geometrical and compositional properties of the plates are varied. In these models, the trench and the overriding plate move self-consistently as a function of the dynamics of the system. The effect of continental subduction on trench migration is largely investigated. Results from a parametric study showed that despite different rheological properties of the plates, all models with a uniform continental crust share the same kinematic behaviour: the trench starts to advance once the continent arrives at the subduction zone. Hence, the advancing mode in continental collision scenarios is at least partly driven by an intrinsic feature of the system. Moreover, the presence of a weak lower crust within the continental plate can lead to the occurrence of delamination. Indeed, by changing the viscosity of the lower crust, both delamination and slab detachment can occur. Delamination is favoured by a low viscosity value of the lower crust, because this makes the mechanical decoupling easier between crust and lithospheric mantle. These features are observed both in 2D and 3D models, but the numerical results of the 3D models also showed that the rheology of the continental crust has a very strong effect on the dynamics of the whole system, since it influences not only the continental part of plate but also the oceanic sides.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Wave breaking is an important coastal process, influencing hydro-morphodynamic processes such as turbulence generation and wave energy dissipation, run-up on the beach and overtopping of coastal defence structures. During breaking, waves are complex mixtures of air and water (“white water”) whose properties affect velocity and pressure fields in the vicinity of the free surface and, depending on the breaker characteristics, different mechanisms for air entrainment are usually observed. Several laboratory experiments have been performed to investigate the role of air bubbles in the wave breaking process (Chanson & Cummings, 1994, among others) and in wave loading on vertical wall (Oumeraci et al., 2001; Peregrine et al., 2006, among others), showing that the air phase is not negligible since the turbulent energy dissipation involves air-water mixture. The recent advancement of numerical models has given valuable insights in the knowledge of wave transformation and interaction with coastal structures. Among these models, some solve the RANS equations coupled with a free-surface tracking algorithm and describe velocity, pressure, turbulence and vorticity fields (Lara et al. 2006 a-b, Clementi et al., 2007). The single-phase numerical model, in which the constitutive equations are solved only for the liquid phase, neglects effects induced by air movement and trapped air bubbles in water. Numerical approximations at the free surface may induce errors in predicting breaking point and wave height and moreover, entrapped air bubbles and water splash in air are not properly represented. The aim of the present thesis is to develop a new two-phase model called COBRAS2 (stands for Cornell Breaking waves And Structures 2 phases), that is the enhancement of the single-phase code COBRAS0, originally developed at Cornell University (Lin & Liu, 1998). In the first part of the work, both fluids are considered as incompressible, while the second part will treat air compressibility modelling. The mathematical formulation and the numerical resolution of the governing equations of COBRAS2 are derived and some model-experiment comparisons are shown. In particular, validation tests are performed in order to prove model stability and accuracy. The simulation of the rising of a large air bubble in an otherwise quiescent water pool reveals the model capability to reproduce the process physics in a realistic way. Analytical solutions for stationary and internal waves are compared with corresponding numerical results, in order to test processes involving wide range of density difference. Waves induced by dam-break in different scenarios (on dry and wet beds, as well as on a ramp) are studied, focusing on the role of air as the medium in which the water wave propagates and on the numerical representation of bubble dynamics. Simulations of solitary and regular waves, characterized by both spilling and plunging breakers, are analyzed with comparisons with experimental data and other numerical model in order to investigate air influence on wave breaking mechanisms and underline model capability and accuracy. Finally, modelling of air compressibility is included in the new developed model and is validated, revealing an accurate reproduction of processes. Some preliminary tests on wave impact on vertical walls are performed: since air flow modelling allows to have a more realistic reproduction of breaking wave propagation, the dependence of wave breaker shapes and aeration characteristics on impact pressure values is studied and, on the basis of a qualitative comparison with experimental observations, the numerical simulations achieve good results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Department of Mechanical and Civil Engineering (DIMeC) of the University of Modena and Reggio Emilia is developing a new type of small capacity HSDI 2-Stroke Diesel engine (called HSD2), featuring a specifically designed combustion system, aimed to reduce weight, size and manufacturing costs, and improving pollutant emissions at partial load. The present work is focused on the analysis of the combustion and the scavenging process, investigated by means of a version of the KIVA-3V code customized by the University of Chalmers and modified by DIMeC. The customization of the KIVA-3V code includes a detailed combustion chemistry approach, coupled with a comprehensive oxidation mechanism for diesel oil surrogate and the modeling of turbulence/chemistry interaction through the PaSR (Partially Stirred Reactor) model. A four stroke automobile Diesel engine featuring a very close bore size is taken as a reference, for both the numerical models calibration and for a comparison with the 2-Stroke engine. Analysis is carried out trough a comparison between HSD2 and FIAT 1300 MultiJet in several operating conditions, at full and partial load. Such a comparison clearly demonstrates the effectiveness of the two stroke concept in terms of emissions reduction and high power density. However, HSD2 is still a virtual engine, and experimental results are needed to assume the reliability of numerical results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dielectric Elastomers (DE) are incompressible dielectrics which can experience deviatoric (isochoric) finite deformations in response to applied large electric fields. Thanks to the strong electro-mechanical coupling, DE intrinsically offer great potentialities for conceiving novel solid-state mechatronic devices, in particular linear actuators, which are more integrated, lightweight, economic, silent, resilient and disposable than equivalent devices based on traditional technologies. Such systems may have a huge impact in applications where the traditional technology does not allow coping with the limits of weight or encumbrance, and with problems involving interaction with humans or unknown environments. Fields such as medicine, domotic, entertainment, aerospace and transportation may profit. For actuation usage, DE are typically shaped in thin films coated with compliant electrodes on both sides and piled one on the other to form a multilayered DE. DE-based Linear Actuators (DELA) are entirely constituted by polymeric materials and their overall performance is highly influenced by several interacting factors; firstly by the electromechanical properties of the film, secondly by the mechanical properties and geometry of the polymeric frame designed to support the film, and finally by the driving circuits and activation strategies. In the last decade, much effort has been focused in the devolvement of analytical and numerical models that could explain and predict the hyperelastic behavior of different types of DE materials. Nevertheless, at present, the use of DELA is limited. The main reasons are 1) the lack of quantitative and qualitative models of the actuator as a whole system 2) the lack of a simple and reliable design methodology. In this thesis, a new point of view in the study of DELA is presented which takes into account the interaction between the DE film and the film supporting frame. Hyperelastic models of the DE film are reported which are capable of modeling the DE and the compliant electrodes. The supporting frames are analyzed and designed as compliant mechanisms using pseudo-rigid body models and subsequent finite element analysis. A new design methodology is reported which optimize the actuator performances allowing to specifically choose its inherent stiffness. As a particular case, the methodology focuses on the design of constant force actuators. This class of actuators are an example of how the force control could be highly simplified. Three new DE actuator concepts are proposed which highlight the goodness of the proposed method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to improve the animal welfare, the Council Directive 1999/74/EC (defining minimum standards for the welfare of laying hens) will ban conventional cage systems since 2012, in favour of enriched cages or floor systems. As a consequence an increased risk of bacterial contamination of eggshell is expected (EFSA, 2005). Furthermore egg-associated salmonellosis is an important public health problem throughout the world (Roberts et al., 1994). In this regard the introduction of efficient measures to reduce eggshell contamination by S. Enteritidis or other bacterial pathogens, and thus to prevent any potential or additional food safety risk for Human health, may be envisaged. The hot air pasteurization can be a viable alternative for the decontamination of the surface of the egg shell. Few studies have been performed on the decontamination power of this technique on table eggs (Hou et al, 1996; James et al., 2002). The aim of this study was to develop innovative techniques to remove surface contamination of shell eggs by hot air under natural or forced convection. Initially two simplified finite element models describing the thermal interaction between the air and egg were developed, respectively for the natural and forced convection. The numerical models were validated using an egg simulant equipped by type-K thermocouple (Chromel/Alumel). Once validated, the models allowed the selection of a thermal cycle with an inner temperature always lower than 55°C. Subsequently a specific apparatus composed by two hot air generators, one cold air generator and rolling cylinder support, was built to physically condition the eggs. The decontamination power of the thermal treatments was evaluated on shell eggs experimentally inoculated with either Salmonella Enteritidis, Escherichia coli, Listeria monocytogenes and on shell eggs containing only the indigenous microflora. The applicability of treatments was further evaluated by comparing quality traits of treated and not treated eggs immediately after the treatment and after 28 days of storage at 20°C. The results showed that the treatment characterized by two shots of hot air at 350°C for 8 sec, spaced by a cooling interval of 32 (forced convection), reduce the bacterial population of more than 90% (Salmonella enteritidis and Listeria monocytogenes). No statistically significant results were obtained comparing E. coli treated and not treated eggs as well as indigenous microflora treated and not treated eggs. A reduction of 2.6 log was observed on Salmonella enteritidis load of eggs immediately after the treatment in oven at 200°C for 200 minutes (natural convection). Furthermore no detrimental effects on quality traits of treated eggs were recorded. These results support the hot air techniques for the surface decontamination of table eggs as an effective industrial process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of the impact of climate change on the environment has been based, until very recently, on an global approach, whose interest from a local point of view is very limited. This thesis, on the contrary, has treated the study of the impact of climate change in the Adriatic Sea basin following a twofold strategy of regionalization and integration of numerical models in order to reproduce the present and future scenarios of the system through a more and more realistic and solid approach. In particular the focus of the study was on the impact on the physical environment and on the sediment transport in the basin. This latter is a very new and original issue, to our knowledge still uninvestigated. The study case of the coastal area of Montenegro was particularly studied, since it is characterized by an important supply of sediment through the Buna/Bojana river, second most important in the Adriatic basin in terms of flow. To do this, a methodology to introduce the tidal processes in a baroclinic primitive equations Ocean General Circulation Model was applied and tidal processes were successfully reproduced in the Adriatic Sea, analyzing also the impacts they have on the mean general circulation, on salt and heat transport and on mixing and stratification of the water column in the different seasons of the year. The new hydrodynamical model has been further coupled with a wave model and with a river and sea sediment transport model, showing good results in the reproduction of sediment transport processes. Finally this complex coupled platform was integrated in the period 2001-2030 under the A1B scenario of IPCC, and the impact of climate change on the physical system and on sediment transport was preliminarily evaluated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The term "Brain Imaging" identi�es a set of techniques to analyze the structure and/or functional behavior of the brain in normal and/or pathological situations. These techniques are largely used in the study of brain activity. In addition to clinical usage, analysis of brain activity is gaining popularity in others recent �fields, i.e. Brain Computer Interfaces (BCI) and the study of cognitive processes. In this context, usage of classical solutions (e.g. f MRI, PET-CT) could be unfeasible, due to their low temporal resolution, high cost and limited portability. For these reasons alternative low cost techniques are object of research, typically based on simple recording hardware and on intensive data elaboration process. Typical examples are ElectroEncephaloGraphy (EEG) and Electrical Impedance Tomography (EIT), where electric potential at the patient's scalp is recorded by high impedance electrodes. In EEG potentials are directly generated from neuronal activity, while in EIT by the injection of small currents at the scalp. To retrieve meaningful insights on brain activity from measurements, EIT and EEG relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of the electric �field distribution therein. The inhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeo�ff between physical accuracy and technical feasibility, which currently severely limits the capabilities of these techniques. Moreover elaboration of data recorded requires usage of regularization techniques computationally intensive, which influences the application with heavy temporal constraints (such as BCI). This work focuses on the parallel implementation of a work-flow for EEG and EIT data processing. The resulting software is accelerated using multi-core GPUs, in order to provide solution in reasonable times and address requirements of real-time BCI systems, without over-simplifying the complexity and accuracy of the head models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BTES (borehole thermal energy storage)systems exchange thermal energy by conduction with the surrounding ground through borehole materials. The spatial variability of the geological properties and the space-time variability of hydrogeological conditions affect the real power rate of heat exchangers and, consequently, the amount of energy extracted from / injected into the ground. For this reason, it is not an easy task to identify the underground thermal properties to use when designing. At the current state of technology, Thermal Response Test (TRT) is the in situ test for the characterization of ground thermal properties with the higher degree of accuracy, but it doesn’t fully solve the problem of characterizing the thermal properties of a shallow geothermal reservoir, simply because it characterizes only the neighborhood of the heat exchanger at hand and only for the test duration. Different analytical and numerical models exist for the characterization of shallow geothermal reservoir, but they are still inadequate and not exhaustive: more sophisticated models must be taken into account and a geostatistical approach is needed to tackle natural variability and estimates uncertainty. The approach adopted for reservoir characterization is the “inverse problem”, typical of oil&gas field analysis. Similarly, we create different realizations of thermal properties by direct sequential simulation and we find the best one fitting real production data (fluid temperature along time). The software used to develop heat production simulation is FEFLOW 5.4 (Finite Element subsurface FLOW system). A geostatistical reservoir model has been set up based on literature thermal properties data and spatial variability hypotheses, and a real TRT has been tested. Then we analyzed and used as well two other codes (SA-Geotherm and FV-Geotherm) which are two implementation of the same numerical model of FEFLOW (Al-Khoury model).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nei processi di progettazione e produzione tramite tecnologie di colata di componenti in alluminio ad elevate prestazioni, risulta fondamentale poter prevedere la presenza e la quantità di difetti correlabili a design non corretti e a determinate condizioni di processo. Fra le difettologie più comuni di un getto in alluminio, le porosità con dimensioni di decine o centinaia di m, note come microporosità, hanno un impatto estremamente negativo sulle caratteristiche meccaniche, sia statiche che a fatica. In questo lavoro, dopo un’adeguata analisi bibliografica, sono state progettate e messe a punto attrezzature e procedure sperimentali che permettessero la produzione di materiale a difettologia e microstruttura differenziata, a partire da condizioni di processo note ed accuratamente misurabili, che riproducessero la variabilità delle stesse nell’ambito della reale produzione di componenti fusi. Tutte le attività di progettazione delle sperimentazioni, sono state coadiuvate dall’ausilio di software di simulazione del processo fusorio che hanno a loro volta beneficiato di tarature e validazioni sperimentali ad hoc. L’apparato sperimentale ha dimostrato la propria efficacia nella produzione di materiale a microstruttura e difettologia differenziata, in maniera robusta e ripetibile. Utilizzando i risultati sperimentali ottenuti, si è svolta la validazione di un modello numerico di previsione delle porosità da ritiro e gas, ritenuto ad oggi allo stato dell’arte e già implementato in alcuni codici commerciali di simulazione del processo fusorio. I risultati numerici e sperimentali, una volta comparati, hanno evidenziato una buona accuratezza del modello numerico nella previsione delle difettologie sia in termini di ordini di grandezza che di gradienti della porosità nei getti realizzati.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sea-level variability is characterized by multiple interacting factors described in the Fourth Assessment Report (Bindoff et al., 2007) of the Intergovernmental Panel on Climate Change (IPCC) that act over wide spectra of temporal and spatial scales. In Church et al. (2010) sea-level variability and changes are defined as manifestations of climate variability and change. The European Environmental Agency (EEA) defines sea level as one of most important indicators for monitoring climate change, as it integrates the response of different components of the Earths system and is also affected by anthropogenic contributions (EEA, 2011). The balance between the different sea-level contributions represents an important source of uncertainty, involving stochastic processes that are very difficult to describe and understand in detail, to the point that they are defined as an enigma in Munk (2002). Sea-level rate estimates are affected by all these uncertainties, in particular if we look at possible responses to sea-level contributions to future climate. At the regional scale, lateral fluxes also contribute to sea-level variability, adding complexity to sea-level dynamics. The research strategy adopted in this work to approach such an interesting and challenging topic has been to develop an objective methodology to study sea-level variability at different temporal and spatial scales, applicable in each part of the Mediterranean basin in particular, and in the global ocean in general, using all the best calibrated sources of data (for the Mediterranean): in-situ, remote-sensig and numerical models data. The global objective of this work was to achieve a deep understanding of all of the components of the sea-level signal contributing to sea-level variability, tendency and trend and to quantify them.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La Comunità Europea, alla luce dei recenti eventi alluvionali occorsi nei Paesi Membri ed al progressivo aumento dei danni economici da essi provocati, ha recentemente emanato una direttiva (Direttiva Europea 2007/60/CE, Flood Directive) per la valutazione e la predisposizione di piani di gestione del rischio idraulico alluvionale. Con riferimento a tale contesto l’attività di ricerca condotta si è concentrata sulla valutazione delle potenzialità offerte dalla modellistica numerico-idraulica mono e bidimensionale quale strumento per l’attuazione della Direttiva 2007/60. Le attività sono state affrontate ponendo particolare attenzione alla valutazione dei termini di incertezza che caratterizzano l’applicazione dei modelli numerico-idraulici, esaminando i possibili effetti di tale incertezza sulla mappatura della pericolosità idraulica. In particolare, lo studio si concentra su diversi tratti fluviali del corso medio inferiore del Fiume Po e si articola in tre parti: 1) analisi dell’incertezza connessa alla definizione delle scale di deflusso in una generica sezione fluviale e valutazione dei suoi effetti sulla calibrazione dei modelli numerici quasi-bidimensionali (quasi-2D); 2) definizione di mappe probabilistiche di allagamento per tratti fluviali arginati in presenza di tre sorgenti di incertezza: incertezza nelle condizioni al contorno di monte, nelle condizioni di valle e nell’identificazione delle eventuali brecce arginali; 3) valutazione dell’applicabilità di un modello quasi-2D per la definizione, a grande scala spaziale, di strategie alternative al tradizionale rialzo dei manufatti arginali per la mitigazione del rischio alluvionale associato a eventi di piena catastrofici. Le analisi condotte, oltre ad aver definito e valutato le potenzialità di metodologie e modelli idraulici a diversa complessità, hanno evidenziato l’entità e l’impatto dei più importanti elementi d’incertezza, sottolineando come la corretta mappatura della pericolosità idraulica debba sempre essere accompagnata da una valutazione della sua incertezza.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L'obiettivo della tesi è stato quello di indagare il complesso problema della vulnerabilità sismica dei ponte in muratura ad arco utilizzando modelli semplificati. Dopo una descrizione dei materiali da costruzione impiegati nella realizzazione e dei principali elementi dei un ponti in muratura, si è indirizzato lo studio di un ponte ad arco situato nel comune di San Marcello Pistoiese. Viene mostrato un modello numerico che permette di descrivere il comportamento strutturale del ponte sotto azione sismica e di valutare la capacità di carico del ponte sottoposto ad una azione trasversale. In un secondo momento viene descritta la realizzazione di un modello in scala del ponte, che è stato sottoposto a prove distruttive effettuate per valutare la capacità di carico del ponte rispetto ad un ipotetica azione orizzontale. Si è cercato poi di inquadrare il problema in un modello teorico che faccia riferimento all'analisi limite. Esso descrive un cinematismo di collasso a telaio che prende spunto dal quadro fessurativo del modello in muratura. Infine sono stati presentati modelli FEM numerici in ordine di complessità crescente, cercando di inquadrare il comportamento meccanico del prototipo del ponte. Tre tipi di modelli sono rappresentati: un telaio incernierato alle estremità costituito da elementi beam con resistenza alla flessione . Il secondo tipo è costituito da una reticolare equivalente che mima lo schema del ponte ed è formato solo da bielle. Infine, il terzo tipo cerca di descrivere l'intero modello con elementi tridimensionali.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Environmental computer models are deterministic models devoted to predict several environmental phenomena such as air pollution or meteorological events. Numerical model output is given in terms of averages over grid cells, usually at high spatial and temporal resolution. However, these outputs are often biased with unknown calibration and not equipped with any information about the associated uncertainty. Conversely, data collected at monitoring stations is more accurate since they essentially provide the true levels. Due the leading role played by numerical models, it now important to compare model output with observations. Statistical methods developed to combine numerical model output and station data are usually referred to as data fusion. In this work, we first combine ozone monitoring data with ozone predictions from the Eta-CMAQ air quality model in order to forecast real-time current 8-hour average ozone level defined as the average of the previous four hours, current hour, and predictions for the next three hours. We propose a Bayesian downscaler model based on first differences with a flexible coefficient structure and an efficient computational strategy to fit model parameters. Model validation for the eastern United States shows consequential improvement of our fully inferential approach compared with the current real-time forecasting system. Furthermore, we consider the introduction of temperature data from a weather forecast model into the downscaler, showing improved real-time ozone predictions. Finally, we introduce a hierarchical model to obtain spatially varying uncertainty associated with numerical model output. We show how we can learn about such uncertainty through suitable stochastic data fusion modeling using some external validation data. We illustrate our Bayesian model by providing the uncertainty map associated with a temperature output over the northeastern United States.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Superconduttori bulk in MgB2, ottenuti con tecnologia Mg-RLI brevettata da Edison Spa, sono stati oggetto di un'approfondita analisi in termini di forze di levitazione. Questo studio è stato preliminare per la progettazione di un innovativo sistema di levitazione lineare. I risultati ottenuti sperimentalmente sono stati validati attraverso modelli numerici sviluppati ad hoc. I campioni oggetto dello studio sono tre bulk in MgB2 rappresentativi delle tipiche forme usate nelle applicazioni reali: un disco, un cilindro, una piastra. I bulk sono stati misurati con un sistema di misura per le forze di levitazione realizzato a tale scopo. Un protocollo sperimentale è stato seguito per la caratterizzazione di base, sia in condizioni Field Cooling sia Zero Field Cooling, al quale sono state affiancate prove specifiche come la possibilità di mantenere inalterate le proprietà superconduttive attraverso la giunzione di più campioni con la tecnologia Mg-RLI. Un modello numerico è stato sviluppato per convalidare i risultati sperimentali e per studiare l'elettrodinamica della levitazione. Diverse configurazioni di rotori magnetici sono state accoppiate con un cilindro in MgB2 con lo scopo di valutare la soluzione ottimale; questo tema è stato apporofondito attraverso lo sviluppo di un software di simulazione che può tenere conto sia del numero di magneti sia della presenza di anelli in materiale magneti intercalati fra di essi. Studi analoghi sono stati portati avanti su una piastra di MgB2 per simulare il comportamento di una geometria piana. Un sistema di raffreddamento innovativo basato sull'azoto solido è stato studiato per poterlo accoppiare con un sistema di levitazione. Il criostato progettato è costituito da due dewar, uno dentro l'altro; quello interno ha lo scopo di raffreddare l'MgB2 mentre quello esterno di limitare delle perdite verso l'esterno. Il criopattino così ottenuto è accoppiato in condizioni FC ad una rotaia formata da magneti permanenti in NdFeB.