2 resultados para new generations
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In recent years we have witnessed important changes: the Second Quantum Revolution is in the spotlight of many countries, and it is creating a new generation of technologies. To unlock the potential of the Second Quantum Revolution, several countries have launched strategic plans and research programs that finance and set the pace of research and development of these new technologies (like the Quantum Flagship, the National Quantum Initiative Act and so on). The increasing pace of technological changes is also challenging science education and institutional systems, requiring them to help to prepare new generations of experts. This work is placed within physics education research and contributes to the challenge by developing an approach and a course about the Second Quantum Revolution. The aims are to promote quantum literacy and, in particular, to value from a cultural and educational perspective the Second Revolution. The dissertation is articulated in two parts. In the first, we unpack the Second Quantum Revolution from a cultural perspective and shed light on the main revolutionary aspects that are elevated to the rank of principles implemented in the design of a course for secondary school students, prospective and in-service teachers. The design process and the educational reconstruction of the activities are presented as well as the results of a pilot study conducted to investigate the impact of the approach on students' understanding and to gather feedback to refine and improve the instructional materials. The second part consists of the exploration of the Second Quantum Revolution as a context to introduce some basic concepts of quantum physics. We present the results of an implementation with secondary school students to investigate if and to what extent external representations could play any role to promote students’ understanding and acceptance of quantum physics as a personal reliable description of the world.
Resumo:
Creativity seems mysterious; when we experience a creative spark, it is difficult to explain how we got that idea, and we often recall notions like ``inspiration" and ``intuition" when we try to explain the phenomenon. The fact that we are clueless about how a creative idea manifests itself does not necessarily imply that a scientific explanation cannot exist. We are unaware of how we perform certain tasks, such as biking or language understanding, but we have more and more computational techniques that can replicate and hopefully explain such activities. We should understand that every creative act is a fruit of experience, society, and culture. Nothing comes from nothing. Novel ideas are never utterly new; they stem from representations that are already in mind. Creativity involves establishing new relations between pieces of information we had already: then, the greater the knowledge, the greater the possibility of finding uncommon connections, and the more the potential to be creative. In this vein, a beneficial approach to a better understanding of creativity must include computational or mechanistic accounts of such inner procedures and the formation of the knowledge that enables such connections. That is the aim of Computational Creativity: to develop computational systems for emulating and studying creativity. Hence, this dissertation focuses on these two related research areas: discussing computational mechanisms to generate creative artifacts and describing some implicit cognitive processes that can form the basis for creative thoughts.