7 resultados para neurotoxic esterase

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blue mould caused by Penicillium expansum Link is one of the most destructive rot of pome fruit in all growing areas (Snowdon, 1990; Jones and Aldwinckle, 1991; Tonini,1996) In the past, Penicillium rot has been controlled by fungicide postharvest treatment mainly by thiabendazole (TBZ) and benomyl (Hardenburg and Spalding, 1972), but their intense use produced the appearance of resistant strains with a great reduction of their activity The aims of the present study were to characterize the isolates of Pencillium sp causing blue mold on pear in Italy by physiological and biochemical parameters. In particular differencing also the behavior of isolates to relationship with sensitivity or resistance to TBZ treatments. We have examined the early stage of infection in relation to enzyme activity, local modulation of pH, production of organic acids, and to secondary metabolism of pathogen. The results described here confirm that the majority of P. expansum isolates from pears packing houses are resistant to TBZ, Among the TBZ-resistant isolates scored in this work, different isolates (RR) showed higher percentage of conidial germination on TBZ-amended medium compared to non amended medium. This may indicate a stimulatory effect of TBZ on conidial germination. Therefore TBZ treatments are not only ineffective for controlling P. expansum, but they may also increase the severity of blue mould on fruits. In the absence of fungicide, isolates showed a significant difference for infection severity, R and RR isolates are characterized by higher pathogenic fitness on fruits, producing larger lesions than S isolates. These data are supported by the study with laboratory-induced resistant isolates, which shows the lack of correlation between TBZ resistance and osmotic sensitivity, and highlights the association between TBZ resistance and infection severity (Baraldi et al 2003). Enzymatic screening gave a positive reaction to esterase, urease, pectinase activity, in addition, the pathogen is able to synthesize a complex enzyme act to degrade the main components of the cell wall especially pectin and cellulose. Isolated sensitive and resistant are characterized by a good activity of pectinase, especially from poligactoronase, which, as already reported by several studies (D'hallewin et al, 2004; Prusky et al, 2004), are the basis of degradative process of cell wall. Also, although the measure was minor also highlighted some activities of cellulase, but even note in the production of this kind of cellulase and hemicellulase P. Expansum were not targeted, studies have found no other source of information in this regard. Twenty isolates of Penicillium expansum, were tested in vitro ad in vivo for acid production ability and pH drop. We have found that modulation of pH and the organic acids extrusion were influence to various parameter:  Initial pH: in general, the greatest reduction of pH was observed in isolates grown at pH 7, except for four isolates that maintained the pH of the medium close to 7, the others significantly decreased the pH, ranging from 5.5 to 4.1.. In extreme acid condition (pH 3,0) growth and modulation of pH is most lower respect optimal condition (pH 5,0). Also isolates R and RR have showed a greater adaptation to environmental condition more than isolates S.  Time: although the acidification continues for some days, PH modulation is strongest in early hours (48-72 hours)of inoculation process. Time also affects the quality of organic acids, for example in vitro results showed an initial abundant production of succinc acid, followed to important production of galacturoinc acid.  Substrates: there are many differences for the type of acids produced in vitro and in vivo. Results showed in vivo an abundant production of galacturonic, malic, and citric acids and some unknown organic acids in smaller concentrations. Secondary metabolite analysis revealed intra-specific differences, and patulin was found in all isolates, but most significant reduction was observed between in vitro and in vivo samples. There was no correlation between the concentration of patulin, and the percentage of infected fruits, but sample with a lower infection severity of rotten area than the others, showed a significantly lower mycotoxin concentration than samples with a higher lesion diameter of rotten area. Beyond of patulin was detected the presence of another secondary metabolite, penitrem A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The β-Amyloid (βA) peptide is the major component of senile plaques that are one of the hallmarks of Alzheimer’s Disease (AD). It is well recognized that Aβ exists in multiple assembly states, such as soluble oligomers or insoluble fibrils, which affect neuronal viability and may contribute to disease progression. In particular, common βA-neurotoxic mechanisms are Ca2+ dyshomeostasis, reactive oxygen species (ROS) formation, altered signaling, mitochondrial dysfunction and neuronal death such as necrosis and apoptosis. Recent study shows that the ubiquitin-proteasome pathway play a crucial role in the degradation of short-lived and regulatory proteins that are important in a variety of basic and pathological cellular processes including apoptosis. Guanosine (Guo) is a purine nucleoside present extracellularly in brain that shows a spectrum of biological activities, both under physiological and pathological conditions. Recently it has become recognized that both neurons and glia also release guanine-based purines. However, the role of Guo in AD is still not well established. In this study, we investigated the machanism basis of neuroprotective effects of GUO against Aβ peptide-induced toxicity in neuronal (SH-SY5Y), in terms of mitochondrial dysfunction and translocation of phosphatidylserine (PS), a marker of apoptosis, using MTT and Annexin-V assay, respectively. In particular, treatment of SH-SY5Y cells with GUO (12,5-75 μM) in presence of monomeric βA25-35 (neurotoxic core of Aβ), oligomeric and fibrillar βA1-42 peptides showed a strong dose-dependent inhibitory effects on βA-induced toxic events. The maximum inhibition of mitochondrial function loss and PS translocation was observed with 75 μM of Guo. Subsequently, to investigate whether neuroprotection of Guo can be ascribed to its ability to modulate proteasome activity levels, we used lactacystin, a specific inhibitor of proteasome. We found that the antiapoptotic effects of Guo were completely abolished by lactacystin. To rule out the possibility that this effects resulted from an increase in proteasome activity by Guo, the chymotrypsin-like activity was assessed employing the fluorogenic substrate Z-LLL-AMC. The treatment of SH-SY5Y with Guo (75 μM for 0-6 h) induced a strong increase, in a time-dependent manner, of proteasome activity. In parallel, no increase of ubiquitinated protein levels was observed at similar experimental conditions adopted. We then evaluated an involvement of anti and pro-apoptotic proteins such as Bcl-2, Bad and Bax by western blot analysis. Interestingly, Bax levels decreased after 2 h treatment of SH-SY5Y with Guo. Taken together, these results demonstrate that Guo neuroprotective effects against βA-induced apoptosis are mediated, at least partly, via proteasome activation. In particular, these findings suggest a novel neuroprotective pathway mediated by Guo, which involves a rapid degradation of pro-apoptotic proteins by the proteasome. In conclusion, the present data, raise the possibility that Guo could be used as an agent for the treatment of AD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sigma (σ) receptors are well established as a non-opioid, non-phencyclidine, and haloperidol-sensitive receptor family with its own binding profile and a characteristic distribution in the central nervous system (CNS) as well as in endocrine, immune, and some peripheral tissues. Two σ receptors subtypes, termed σ1 and σ2, have been pharmacologically characterized, but, to date, only the σ1 has also been cloned. Activation of σ1 receptors alter several neurotransmitter systems and dopamine (DA) neurotrasmission has been often shown to constitute an important target of σ receptors in different experimental models; however the exact role of σ1 receptor in dopaminergic neurotransmission remains unclear. The DA transporter (DAT) modulates the spatial and temporal aspects of dopaminergic synaptic transmission and interprer the primary mechanism by wich dopaminergic neurons terminate the signal transmission. For this reason present studies have been focused in understanding whether, in cell models, the human subtype of σ1 (hσ1) receptor is able to directly modulate the human DA transporter (hDAT). In the first part of this thesis, HEK-293 and SH-SY5Y cells were permanently transfected with the hσ1 receptor. Subsequently, they were transfected with another plasmid for transiently expressing the hDAT. The hDAT activity was estimated using the described [3H]DA uptake assay and the effects of σ ligands were evaluated by measuring the uptaken [3H]DA after treating the cells with known σ agonists and antagonists. Results illustrated in this thesis demonstrate that activation of overexpressed hσ1 receptors by (+)-pentazocine, the σ1 agonist prototype, determines an increase of 40% of the extracellular [3H]DA uptake, in comparison to non-treated controls and the σ1 antagonists BD-1047 and NE-100 prevent the positive effect of (+)-pentazocine on DA reuptake DA is likely to be considered a neurotoxic molecule. In fact, when levels of intracellular DA abnormally invrease, vescicles can’t sequester the DA which is metabolized by MAO (A and B) and COMT with consequent overproduction of oxygen reactive species and toxic catabolites. Stress induced by these molecules leads cells to death. Thus, for the second part of this thesis, experiments have been performed in order to investigate functional alterations caused by the (+)-pentazocine-mediated increase of DA uptake; particularly it has been investigated if the increase of intracellular [DA] could affect cells viability. Results obtained from this study demonstrate that (+)-pentazocine alone increases DA cell toxicity in a concentration-dependent manner only in cells co-expressing hσ1 and hDAT and σ1 antagonists are able to revert the (+)-pentazocine-induced increase of cell susceptibility to DA toxicity. In the last part of this thesis, the functional cross-talking between hσ1 receptor and hDAT has been further investigated using confocal microscopy. From the acquired data it could be suggested that, following exposure to (+)-pentazocine, the hσ1 receptors massively translocate towards the plasma membrane and colocalize with the hDATs. However, any physical interaction between the two proteins remains to be proved. In conclusion, the presented study shows for the first time that, in cell models, hσ1 receptors directly modulate the hDAT activity. Facilitation of DA uptake induced by (+)-pentazocine is reflected on the increased cell susceptibility to DA toxicity; these effects are prevented by σ1 selective antagonists. Since numerous compounds, including several drugs of abuse, bind to σ1 receptors and activating them could facilitate the damage of dopaminergic neurons, the reported protective effect showed by σ1 antagonists would represent the pharmacological basis to test these compounds in experimental models of dopaminergic neurodegenerative diseases (i.e. Parkinson’s Disease).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fundamental assumption for by-product from winery industy waste-management is their economic and commercial increase in value. High energetic value recovery from winery industry is an attractive economic solution to stimulate new sustainable process. Approach of this work is based about physic and biological treatment with grape stalks and grape marc to increase polysaccharides components of cell wall and energetic availability of this by-products. Grape stalks for example have a high percentage of lignin and cellulose and can’t be used, whitout pretreatment, for an anaerobic digestion process. Our findings show enzymatic and thermo-mechanical pre-treatments in combined application for optimise hydrolytic mechanism on winemaking wastes which represents 0,9 milion ton/year in Italy and on straw, cereal by-products with high lignin content. A screening of specifically industrial enzymatic complex for the hydrolysis lignocellulosic biomass were tested using the principal polysaccharides component of the vegetal cells. Combined thermo-mechanical and enzymatic pretreatment improve substrates conversion in batch test fermentation experiment. The conservation of the grape stalks, at temperature above 0°C, allow the growth of spontaneus fermentation that reduce their polysaccharides content so had investigated anarobic condition of conservation. The other objective of this study was to investigate the capability of a proprietary strain of L.buchneri LN 40177 to enhance the accessibility of fermentable forage constituents during the anaerobic conservation process by releasing the enzyme ferulate esterase. The time sequence study by batch tests showed that the L. buchneri LN-40177 inoculated grape stalk substrate was more readily available in the fermenter. In batch tests with grape stalk, after mechanical treatment, the L. buchneri LN41077 treated substrate yielded on average 70% more biogas per kg/DM. Thermo-mechanical, enzymatic and biological treatment with L. buchneri LN-40177 can increase the biogas production from low fermented biomasses and the consequent their useful in anaerobic biodigesters for agro-bioenergy production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microglial involvement in neurological disorders is well-established, being microglial activation not only associated with neurotoxic consequences, but also with neuroprotective effects. The studies presented here, based on microglia rat primary cell cultures and mainly on microglial conditioned medium (MCM), show insights into the mechanism of Superoxide dismutase 1 (SOD1) and Apolipoprotein E (ApoE) secretion by microglia as well as their neuroprotective effect towards primary cerebellar granule neurons (CGNs) exposed to the dopaminergic toxin 6-hydroxydopamine (6-OHDA). SOD1 and ApoE are released respectively through non-classical lysosomal or the classical ER/Golgi-mediated secretion pathway. Microglial conditioned medium, in which SOD1 and ApoE accumulated, protected CGNs from degeneration and these effects were replicated when exogenous SOD1 or ApoE was added to a non-conditioned medium. SOD1 neuroprotective action was mediated by increased cell calcium from an external source. ApoE release is negatively affected by microglia activation, both with lipopolysaccharide (LPS) and Benzoylbenzoyl-ATP (Bz-ATP) but is stimulated by neuronal-conditioned medium as well as in microglia-neurons co-culture conditions. This neuronal-stimulated microglial ApoE release is differently regulated by activation states (i.e. LPS vs ATP) and by 6-hydroxydopamine-induced neurodegeneration. In co-culture conditions, microglial ApoE release is essential for neuroprotection, since microglial ApoE silencing through siRNA abrogated protection of cerebellar granule neurons against 6-OHDA toxicity. Therefore, these molecules could represent a target for manipulation aimed at promoting neuroprotection in brain diseases. Considering a pathological context, and the microglial ability to adopt a neuroprotective or neurotoxic profile, we characterize the microglial M1/M2 phenotype in transgenic rats (McGill-R-Thy1-APP) which reproduce extensively the Alzheimer’s-like amyloid pathology. Here, for the first time, cortical, hippocampal and cerebellar microglia of wild type and transgenic adult rats were compared, at both early and advanced stages of the pathology. In view of possible therapeutic translations, these findings are relevant to test microglial neuroprotection, in animal models of neurodegenerative diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La demolizione idrolitica delle pareti cellulari delle piante tramite enzimi lignocellulosici è quindi uno degli approcci più studiati della valorizzazione di scarti agricoli per il recupero di fitochimici di valore come secondary chemical building block per la chimica industriale. White rot fungi come il Pleurotus ostreatus producono una vasta gamma di enzimi extracellulari che degradano substrati lignocellulosici complessi in sostanze solubili per essere utilizzati come nutrienti. In questo lavoro abbiamo studiato la produzione di diversi tipi di enzimi lignocellulosici quali cellulase, xilanase, pectinase, laccase, perossidase e arylesterase (caffeoilesterase e feruloilesterase), indotte dalla crescita di Pleurotus ostreatus in fermentazione allo stato solido (SSF) di sottoprodotti agroalimentari (graspi d’uva, vinaccioli, lolla di riso, paglia di grano e crusca di grano) come substrati. Negli ultimi anni, SSF ha ricevuto sempre più interesse da parte dei ricercatori, dal momento che diversi studi per produzioni di enzimi, aromi, coloranti e altre sostanze di interesse per l' industria alimentare hanno dimostrato che SSF può dare rendimenti più elevati o migliorare le caratteristiche del prodotto rispetto alla fermentazione sommersa. L’utilizzo dei sottoprodotti agroalimentari come substrati nei processi SSF, fornisce una via alternativa e di valore, alternativa a questi residui altrimenti sotto/o non utilizzati. L'efficienza del processo di fermentazione è stato ulteriormente studiato attraverso trattamenti meccanici di estrusione del substrato , in grado di promuovere il recupero dell’enzima e di aumentare l'attività prodotta. Le attività enzimatiche prodotte dalla fermentazione sono strettamente dipendente della rimozione periodica degli enzimi prodotti. Le diverse matrici vegetali utilizzate hanno presentato diversi fenomeni induttivi delle specifiche attività enzimatiche. I processi SSF hanno dimostrato una buona capacità di produrre enzimi extracellulari in grado di essere utilizzati successivamente nei processi idrolitici di bioraffinazione per la valorizzazione dei prodotti agroalimentari.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Urine is considered an ideal source of biomarkers, however in veterinary medicine a complete study on the urine proteome is still lacking. The present work aimed to apply proteomic techniques to the separation of the urine proteome in dogs, cats, horses, cows and some non-conventional species. High resolution electrophoresis (HRE) was also validated for the quantification of albuminuria in dogs and cats. In healthy cats, applying SDS-PAGE and 2DE coupled to mass spectrometry (MS), was produced a reference map of the urine proteome. Moreover, 13 differentially represented urine proteins were linked with CKD, suggesting uromodulin, cauxin, CFAD, Apo-H, RBP and CYSM as candidate biomarkers to be investigated further. In dogs, applying SDS-PAGE coupled to MS, was highlighted a specific pattern in healthy animals showing important differences in patients affected by leishmaniasis. In particular, uromodulin could be a putative biomarker of tubular damage while arginine esterase and low MW proteins needs to be investigated further. In cows, applying SDS-PAGE, were highlighted different patterns between heifers and cows showing some interesting changes during pregnancy. In particular, putative alpha-fetoprotein and b-PAP needs to be further investigated. In horses, applying SDS-PAGE, was produced a reference profile characterized by 13±4 protein bands and the most represented one was the putative uromodulin. Proteinuric horses showed the decrease of the putative uromodulin band and the appearance of 2 to 4 protein bands at higher MW and a greater variability in the range of MW between 49 and 17 kDa. In felids and giraffes was quantified proteinuria reporting the first data for UTP and UPC. Moreover, by means of SDS-PAGE, were highlighted species-specific electrophoretic patterns in big felids and giraffes.