5 resultados para neonatal care unit
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Admission blood lactate concentration has been shown to be a useful indicator of disease severity in human medicine and numerous studies have associated hyperlactatemia with patients at high risk of death who should be treated aggressively regardless of the cause of the lactate generation. The degree and duration of hyperlactacidaemia also have been correlated with the subsequent development of organ failure. Similarly, in a small number of studies about equine colic, blood lactate concentration has been investigated as a useful prognostic variable . In neonatal foals blood lactate was studied first by Magdesian (2003) who described venous blood lactate concentration in 14 normal foals during the initial 48 hours post-partum. A preliminary study about lactate concentration in foals presenting to a neonatal intensive care unit reported that surviving foals had earlier lactate clearance. The measurement of blood lactate concentration is traditionally available with a wet chemistry laboratory method or with blood-gas analyzers, for clinicians working at university or large private hospital. But this methods may not be easily accessible to many practitioners in field conditions. Several relatively inexpensive, easy to use and rapid pocket size monitors to measure lactate concentration have been validated in human patients and athletes. None of these portable lactate analyzer have been evaluated in clinically normal neonatal foals or in foals referred to a neonatal intensive care unit. The aims of this study were to validate the Lactate Scout analyzer in neonatal foals, investigating the correlation between lactate concentration in whole blood measured with the portable monitor and measured in plasma with the reference laboratory analyzer. The effect of hematocrit (Hct) on the accuracy of Lactate Scout was also evaluated. Further, we determined the utility of venous lactate measurement in critically-ill foals, describing lactate values in the most frequent neonatal pathologies, evaluating serial blood lactate measurements during hospitalization and investigating its prognostic value. The study also describes normal range for lactate in healthy neonatal foals during the first 72 hours of life.
Resumo:
Introduction Postnatal human cytomegalovirus (CMV) infection is usually asymptomatic in term babies, while preterm infants are more susceptible to symptomatic CMV infection. Breastfeeding plays a dominant role in the epidemiology of transmission of postnatal CMV infection, but the risk factors of symptomatic CMV infection in preterm infants are unknown. Patients and Methods Between December 2003 and August 2006, eighty Very Low Birth Weight (VLBW) preterm infants (gestational age ≤ 32 weeks and birth weight < 1500 g), admitted to the Neonatal Intensive Care Unit of St Orsola-Malpighi General Hospital, Bologna were recruited. All of them were breastfed for at least one month. During the first week of life, serological test for CMV was performed on maternal blood. Furthermore, urinary CMV culture was performed in all the infants in order to exclude a congenital CMV infection. Urine samples from each infant were collected and processed for CMV culture once a week. Once every 15 days a blood sample was taken from each infant to evaluate the complete blood count, the hepatic function and the C reactive protein. In addition, samples of fresh breast milk were processed weekly for CMV culture. A genetic analysis of virus variant was performed in the urine of the infected infants and in their mother’s milk to confirm the origin of infection. Results We evaluated 80 VLBW infants and their 68 mothers. Fifty-three mothers (78%) were positive for CMV IgG antibodies, and 15 (22%) were seronegative. In the seronegative group, CMV was never isolated in breast milk, and none of the 18 infants developed viruria; in the seropositive group, CMV was isolated in 21 out of 53 (40%) mother’s milk. CMV was detected in the urine samples of 9 out of 26 (35%) preterm infants, who were born from 21 virolactia positive mothers. Six of these infants had clinically asymptomatic CMV infection, while 3 showed a sepsis-like illness with bradycardia, tachypnea and repeated desaturations. Eight out of nine infants showed abnormal hematologic values. The detection of neutropenia was strictly related to CMV infection (8/9 infected infants vs 17/53 non infected infants, P<.005), such as the detection of an increase in conjugated bilirubin (3/9 infected infants vs 2/53 non infected infants, P<.05). The degree of neutropenia was not different between the two groups (infected/non infected). The use of hemoderivatives (plasma and/or IgM–enriched immunoglobulin) in order to treat a suspected/certain infection in newborn with GE< 28 ws was seen as protective against CMV infection (1/4 infected infants vs 18/20 non infected infants [GE<28 ws]; P<.05). Furthermore, bronchopulmonary dysplasia (defined both as oxygen-dependency at 30 days of life and 36 ws of postmenstrual age) correlated with symptomatic infection (3/3 symptomatic vs 0/6 asymptomatic: P<.05). Conclusion Our data suggest that CMV infection transmitted to preterm newborn through human milk is always asymptomatic when newborns are clinically stable. Otherwise, the infection can worsen a preexisting disease such as bronchopulmonary dysplasia. Human milk offers many nutritional and psychological advantages to preterm newborns: according to our data, there’s no reason to contraindicate it neither to pasteurize the milk of all the mothers of preterm infants who are CMV seropositive.
Resumo:
Objective: To document the existence of a relationship between apnea of prematurity (AOP) and gastroesophageal reflux (GER) in preterm infants. Setting: One Neonatal Intensive Care Unit Patients: Twenty-six preterm infants (gestational age<32 weeks) with recurrent apneas. Intervention: Simultaneous and synchronized recording of polysomnography and pH-impedance monitoring (pH-MII). Polysomnography detects and characterizes apneas, by recording of breathing movement, nasal airflow, electrocardiogram, pulse oximeter saturation. pH-MII is the state-of-theart methodology for GER detection in preterm newborns. Main outcome measures: Relationship between AOP and GER, which were considered temporally related if both started within 30 seconds of each other. Results: One-hundred-fifty-four apneas out of 1136 were temporally related to GER. The frequency of apnea during the one-minute time around the onset of GER was significantly higher than the one detected in the GER-free period (p=0.03). Furthermore, the frequency of apnea in the 30 seconds after GER (GER-triggered apneas) was greater than that detected in the 30 seconds before (p=0.01). A great inter-individual variability was documented in the proportion of GERtriggered apneas. A strong correlation between total number of apneas and the difference between apneas detected 30 seconds after and before GER was found (p=0.034). Conclusions: Our data show that a variable rate of apneas can be triggered by GER in very preterm infant. Further studies are needed to recognise clinical features which identify those patients who are more susceptible to GER-triggered apneas.
Resumo:
In the last years of research, I focused my studies on different physiological problems. Together with my supervisors, I developed/improved different mathematical models in order to create valid tools useful for a better understanding of important clinical issues. The aim of all this work is to develop tools for learning and understanding cardiac and cerebrovascular physiology as well as pathology, generating research questions and developing clinical decision support systems useful for intensive care unit patients. I. ICP-model Designed for Medical Education We developed a comprehensive cerebral blood flow and intracranial pressure model to simulate and study the complex interactions in cerebrovascular dynamics caused by multiple simultaneous alterations, including normal and abnormal functional states of auto-regulation of the brain. Individual published equations (derived from prior animal and human studies) were implemented into a comprehensive simulation program. Included in the normal physiological modelling was: intracranial pressure, cerebral blood flow, blood pressure, and carbon dioxide (CO2) partial pressure. We also added external and pathological perturbations, such as head up position and intracranial haemorrhage. The model performed clinically realistically given inputs of published traumatized patients, and cases encountered by clinicians. The pulsatile nature of the output graphics was easy for clinicians to interpret. The manoeuvres simulated include changes of basic physiological inputs (e.g. blood pressure, central venous pressure, CO2 tension, head up position, and respiratory effects on vascular pressures) as well as pathological inputs (e.g. acute intracranial bleeding, and obstruction of cerebrospinal outflow). Based on the results, we believe the model would be useful to teach complex relationships of brain haemodynamics and study clinical research questions such as the optimal head-up position, the effects of intracranial haemorrhage on cerebral haemodynamics, as well as the best CO2 concentration to reach the optimal compromise between intracranial pressure and perfusion. We believe this model would be useful for both beginners and advanced learners. It could be used by practicing clinicians to model individual patients (entering the effects of needed clinical manipulations, and then running the model to test for optimal combinations of therapeutic manoeuvres). II. A Heterogeneous Cerebrovascular Mathematical Model Cerebrovascular pathologies are extremely complex, due to the multitude of factors acting simultaneously on cerebral haemodynamics. In this work, the mathematical model of cerebral haemodynamics and intracranial pressure dynamics, described in the point I, is extended to account for heterogeneity in cerebral blood flow. The model includes the Circle of Willis, six regional districts independently regulated by autoregulation and CO2 reactivity, distal cortical anastomoses, venous circulation, the cerebrospinal fluid circulation, and the intracranial pressure-volume relationship. Results agree with data in the literature and highlight the existence of a monotonic relationship between transient hyperemic response and the autoregulation gain. During unilateral internal carotid artery stenosis, local blood flow regulation is progressively lost in the ipsilateral territory with the presence of a steal phenomenon, while the anterior communicating artery plays the major role to redistribute the available blood flow. Conversely, distal collateral circulation plays a major role during unilateral occlusion of the middle cerebral artery. In conclusion, the model is able to reproduce several different pathological conditions characterized by heterogeneity in cerebrovascular haemodynamics and can not only explain generalized results in terms of physiological mechanisms involved, but also, by individualizing parameters, may represent a valuable tool to help with difficult clinical decisions. III. Effect of Cushing Response on Systemic Arterial Pressure. During cerebral hypoxic conditions, the sympathetic system causes an increase in arterial pressure (Cushing response), creating a link between the cerebral and the systemic circulation. This work investigates the complex relationships among cerebrovascular dynamics, intracranial pressure, Cushing response, and short-term systemic regulation, during plateau waves, by means of an original mathematical model. The model incorporates the pulsating heart, the pulmonary circulation and the systemic circulation, with an accurate description of the cerebral circulation and the intracranial pressure dynamics (same model as in the first paragraph). Various regulatory mechanisms are included: cerebral autoregulation, local blood flow control by oxygen (O2) and/or CO2 changes, sympathetic and vagal regulation of cardiovascular parameters by several reflex mechanisms (chemoreceptors, lung-stretch receptors, baroreceptors). The Cushing response has been described assuming a dramatic increase in sympathetic activity to vessels during a fall in brain O2 delivery. With this assumption, the model is able to simulate the cardiovascular effects experimentally observed when intracranial pressure is artificially elevated and maintained at constant level (arterial pressure increase and bradicardia). According to the model, these effects arise from the interaction between the Cushing response and the baroreflex response (secondary to arterial pressure increase). Then, patients with severe head injury have been simulated by reducing intracranial compliance and cerebrospinal fluid reabsorption. With these changes, oscillations with plateau waves developed. In these conditions, model results indicate that the Cushing response may have both positive effects, reducing the duration of the plateau phase via an increase in cerebral perfusion pressure, and negative effects, increasing the intracranial pressure plateau level, with a risk of greater compression of the cerebral vessels. This model may be of value to assist clinicians in finding the balance between clinical benefits of the Cushing response and its shortcomings. IV. Comprehensive Cardiopulmonary Simulation Model for the Analysis of Hypercapnic Respiratory Failure We developed a new comprehensive cardiopulmonary model that takes into account the mutual interactions between the cardiovascular and the respiratory systems along with their short-term regulatory mechanisms. The model includes the heart, systemic and pulmonary circulations, lung mechanics, gas exchange and transport equations, and cardio-ventilatory control. Results show good agreement with published patient data in case of normoxic and hyperoxic hypercapnia simulations. In particular, simulations predict a moderate increase in mean systemic arterial pressure and heart rate, with almost no change in cardiac output, paralleled by a relevant increase in minute ventilation, tidal volume and respiratory rate. The model can represent a valid tool for clinical practice and medical research, providing an alternative way to experience-based clinical decisions. In conclusion, models are not only capable of summarizing current knowledge, but also identifying missing knowledge. In the former case they can serve as training aids for teaching the operation of complex systems, especially if the model can be used to demonstrate the outcome of experiments. In the latter case they generate experiments to be performed to gather the missing data.
Resumo:
Neurodevelopment of preterm children has become an outcome of major interest since the improvement in survival due to advances in neonatal care. Many studies focused on the relationships among prenatal characteristics and neurodevelopmental outcome in order to identify the higher risk preterms’ subgroups. The aim of this study is to analyze and put in relation growth and development trajectories to investigate their association. 346 children born at the S.Orsola Hospital in Bologna from 01/01/2005 to 30/06/2011 with a birth weight of <1500 grams were followed up in a longitudinal study at different intervals from 3 to 24 months of corrected age. During follow-up visits, preterms’ main biometrical characteristics were measured and the Griffiths Mental Development Scale was administered to assess neurodevelopment. Latent Curve Models were developed to estimate the trajectories of length and of neurodevelopment, both separately and combined in a single model, and to assess the influence of clinical and socio-economic variables. Neurodevelopment trajectory was stepwise declining over time and length trajectory showed a steep increase until 12 months and was flat afterwards. Higher initial values of length were correlated with higher initial values of neurodevelopment and predicted a more declining neurodevelopment. SGA preterms and those from families with higher status had a less declining neurodevelopment slope, while being born from a migrant mother proved negative on neurodevelopment through the mediating effect of a being taller at 3 months. A longer stay in NICU used as a proxy of preterms’ morbidity) was predictive of lower initial neurodevelopment levels. At 24 months, neurodevelopment is more similar among preterms and is more accurately evaluated. The association among preterms’ neurodevelopment and physiological growth may provide further insights on the determinants of preterms’ outcomes. Sound statistical methods, exploiting all the information collected in a longitudinal study, may be more appropriate to the analysis.