2 resultados para negative-ion element impurities
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Human biomonitoring (HBM) is an ideal tool for evaluating toxicant exposure in health risk assessment. Chemical substances or their metabolites related to environmental pollutants can be detected as biomarkers of exposure using a wide variety of biological fluids. Individual exposure to aromatic hydrocarbon compounds (benzene, toluene, and o-xylene –“BTX”) were analysed with a liquid chromatography coupled to electrospray ionisation-mass spectrometry (μHPLC-ESI-MS/MS) method for the simultaneous quantitative detection of the BTX exposure biomarker SPMA, SBMA and o-MBMA in human urine. Urinary S-phenylmercapturic acid (SPMA) is a biomarker proposed by the American Conference of Governmental Industrial Hygienists (ACGIH) for assessing occupational exposure to benzene (Biological Exposure Index of 25 microg/g creatinine). Urinary S-benzylmercapturic (SBMA) and o-methyl S-benzyl mercapturic acid (o-MBMA) are specific toluene and o-xylene metabolites of glutathione detoxicant pathways, proposed as reliable biomarkers of exposure. To this aim a pre-treatment of the urine with solid phase extraction (SPE) and an evaporation step were necessary to concentrate the mercapturic acids before instrumental analysis. A liquid chromatography separation was carried out with a reversed phase capillary column (Synergi 4u Max-RP) using a binary gradient composed of an acquous solution of formic acid 0.07% v/v and methanol. The mercapturic acids were determinated by negative-ion-mass spectrometry and the data were corrected using isotope-labelled analogs as internal standards. The analytical method follows U.S. Food and Drug Administration guidance and was applied to assess exposure to BTX in a group of 396 traffic wardens. The association between biomarker results and individual factors, such as age, sex and tobacco smoke were also investigated. The present work also included improvements in the methods used by modifying various chromatographic parameters and experimental procedures. A partial validation was conducted to evaluate LOD, precision, accuracy, recovery as well as matrix effects. Higher sensitivity will be possible in future biological monitoring programmes, allowing evaluation of very low level of BTX human exposure. Keywords: Human biomonitoring, aromatic hydrocarbons, biomarker of exposure, HPLC-MS/MS.
Resumo:
Immunosenescence is characterized by a complex remodelling of the immune system, mainly driven by lifelong antigenic burden. Cells of the immune system are constantly exposed to a variety of stressors capable of inducing apoptosis, including antigens and reactive oxygen species continuously produced during immune response and metabolic pathways. The overall homeostasis of the immune system is based on the balance between antigenic load, oxidative stress, and apoptotic processes on one side, and the regenerative potential and renewal of the immune system on the other. Zinc is an essential trace element playing a central role on the immune function, being involved in many cellular processes, such as cell death and proliferation, as cofactor of enzymes, nuclear factors and hormones. In this context, the age associated changes in the immune system may be in part due to zinc deficiency, often observed in aged subjects and able to induce impairment of several immune functions. Thus, the aim of this work was to investigate the role of zinc in two essential events for immunity during aging, i.e. apoptosis and cell proliferation. Spontaneous and oxidative stress-induced apoptosis were evaluated by flow cytometry in presence of a physiological concentration of zinc in vitro on peripheral blood mononuclear cells (PBMCs) obtained from healthy subjects of different age: a group of young subjects, a group of old subjects and a group of nonagenarians. In addition, cell cycle phases were analyzed by flow cytometry in PBMCs, obtained from the subjects of the same groups in presence of different concentration of zinc. We also analyzed the influence of zinc in these processes in relation to p53 codon 72 polymorphism, known to affect apoptosis and cell cycle in age-dependent manner. Zinc significantly reduces spontaneous apoptosis in all age-groups; while it significantly increases oxidative stress-induced late apoptosis/necrosis in old and nonagenarians subjects. Some factors involved in the apoptotic pathway were studied and a zinc effect on mitochondrial membrane depolarization, cytochrome C release, caspase-3 activation, PARP cleavage and Bcl-2 expression was found. In conclusion, zinc inhibits spontaneous apoptosis in PBMCs contrasting the harmful effects due to the cellular culture conditions. On the other hand, zinc is able to increase toxicity and induce cell death in PBMCs from aged subjects when cells are exposed to stressing agents that compromise antioxidant cellular systems. Concerning the relationship between the susceptibility to apoptosis and p53 codon 72 genotype, zinc seems to affect apoptosis only in PBMCs from Pro- people suggesting a role of this ion in strengthening the mechanism responsible of the higher propensity of Pro- towards apoptosis. Regarding cell cycle, high doses of zinc could have a role in the progression of cells from G1 to S phase and from S to G2/M phase. These effect seems depend on the age of the donor but seems to be unrelated to p53 codon 72 genotype. In order to investigate the effect of an in vivo zinc supplementation on apoptosis and cell cycle, PBMCs from a group of aged subjects were studied before and after six weeks of oral zinc supplementation. Zinc supplementation reduces spontaneous apoptosis and it strongly reduces oxidative stress-induced apoptosis. On the contrary, no effect of zinc was observed on cell cycle. Therefore, it’s clear that in vitro and in vivo zinc supplementation have different effects on apoptosis and cell cycle in PBMCs from aged subjects. Further experiments and clinical trials are necessary to clarify the real effect of an in vivo zinc supplementation because this preliminary data could encourage the of this element in all that disease with oxidative stress pathogenesis. Moreover, the expression of metallothioneins (MTs), proteins well known for their zinc-binding ability and involved in many cellular processes, i.e. apoptosis, metal ions detoxification, oxidative stress, differentiation, was evaluated in total lymphocytes, in CD4+ and in CD8+ T lymphocytes from young and old healthy subjects in presence of different concentration of zinc in vitro. Literature data reported that during ageing the levels of these proteins increase and concomitantly they lose the ability to release zinc. This fact induce a down-regulation of many biological functions related to zinc, such as metabolism, gene expression and signal transduction. Therefore, these proteins may turn from protective in young-adult age to harmful agents for the immune function in ageing following the concept that several genes/proteins that increase fitness early in life may have negative effects later in life: named “Antagonistic Pleyotropy Theory of Ageing”. Data obtained in this work indicate an higher and faster expression of MTs with lower doses of zinc in total lymphocytes, in CD4+ and in CD8+ T lymphocytes from old subjects supporting the antagonistic pleiotropic role of these proteins.