4 resultados para natural-killer-cells

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effector function of natural killer (NK) cells is regulated by activating and inhibitory receptors, termed killer immunoglobulin-like receptors (KIRs). In haploidentical T-cell depleted transplantation the donor/recipient KIR mismatch significantly impacts on NK-mediated tumor cell killing, particularly in acute myeloid leukaemia (AML). Thirty-four high risk AML patients entered a phase I-II study of adoptive NK-cell based immunotherapy and were screened for the availability of one haploidentical KIR ligand mismatched donor. Thirteen of them resulted as having one suitable donor. NK cells were enriched from steady-state leukaphereses by using a double-step immunomagnetic separation system, consisting in depletion of CD3+ T cells followed by positive selection of CD56+ NK cells. CD56+ cells were enriched from 7,70% (1,26-11,70) to 93,50% (66,41-99,20) (median recovery 53,05% (30,97-72,85), median T-depletion 3,03 log (2,15-4,52) viability >92%) and their citotoxic activity was inalterate. All patients (4 progressions, 1 partial remission and 8 complete remissions) received NK cell infusion which was preceeded by immunosuppressive chemotherapy (fludarabine and cyclophosphamide) and followed by interleukin 2 injections. The median number of reinfused NK cells was 2,74x10(e)6/kg(1,11-5,00) and contamining CD3+ T cells were always less than 1x10(e)5/kg. The procedure was well-tolerated and no significant toxicity, including GvHD, related to NK cell infusion was observed. The donor NK cells were demonstrated in 5/10 patients. Among the 8 patients in complete remission 5 patients are stable after 18, 15, 4, 2 months of follow-up. Three other patients relapsed after 2 and 7 months. The patient in partial remission obtained a complete remission, which lasted for 6 months. The 4 patients with active/progressive disease showed the persistence of disease. This clinical observation may be correlated with in vitro studies, indicating that AML cells are capable to induce NK cell apoptosis in a dose-depend manner. In summery, a two-step enrichment of CD56+ NK cells allows the collection of a suitable number of target cells to be used as adoptive immunotherapy in AML patients. Infusion of NK cells is feasible and safe and adoptively transferred NK cells can be detected after infusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kidney transplantation is the best treatment option for the restoration of excretory and endocrine kidney function in patients with end-stage renal disease. The success of the transplant is linked to the genetic compatibility between donor and recipient, and upon progress in surgery and immunosuppressive therapy. Numerous studies have established the importance of innate immunity in transplantation tolerance, in particular natural killer (NK) cells represent a population of cells involved in defense against infectious agents and tumor cells. NK cells express on their surface the Killer-cell Immunoglobulin-like Receptors (KIR) which, by recognizing and binding to MHC class I antigens, prevent the killing of autologous cells. In solid organ transplantation context, and in particular the kidney, recent studies show some correlation between the incompatibility KIR / HLA and outcome of transplantation so as to represent an interesting perspective, especially as regards setting of immunosuppressive therapy. The purpose of this study was therefore to assess whether the incompatibility between recipient KIR receptors and HLA class I ligands of the donor could be a useful predictor in order to improve the survival of the transplanted kidney and also to select patients who might benefit of a reduced regimen. One hundred and thirteen renal transplant patients from 1999 to 2005 were enrolled. Genomic DNA was extracted for each of them and their donors and genotyping of HLA A, B, C and 14 KIR genes was carried out. Data analysis was conducted on two case-control studies: one aimed at assessing the outcome of acute rejection and the other to assess the long term transplant outcome. The results showed that two genes, KIR2DS1 and KIR3DS1, are associated with the development of acute rejection (p = 0.02 and p = 0.05, respectively). The presence of the KIR2DS3 gene is associated with a better performance of serum creatinine and glomerular filtration rate (MDRD) over time (4 and 5 years after transplantation, p <0.05), while in the presence of ligand, the serum creatinine and MDRD trend seems to get worse in the long term. The analysis performed on the population, according to whether there was deterioration of renal function or not in the long term, showed that the absence of the KIR2DL1 gene is strongly associated with an increase of 20% of the creatinine value at 5 years, with a relative risk to having a greater creatinine level than the median 5-year equal to 2.7 95% (95% CI: 1.7788 - 2.6631). Finally, the presence of a kidney resulting negative for HLA-A3 / A11, compared to a positive result, in patients with KIR3DL2, showed a relative risk of having a serum creatinine above the median at 5 years after transplantation of 0.6609 (95% CI: 0.4529 -0.9643), suggesting a protective effect given to the absence of this ligand.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During my PhD,I have been develop an innovative technique to reproduce in vitro the 3D thymic microenvironment, to be used for growth and differentiation of thymocytes, and possible transplantation replacement in conditions of depressed thymic immune regulation. The work has been developed in the laboratory of Tissue Engineering at the University Hospital in Basel, Switzerland, under the tutorship of Prof.Ivan Martin. Since a number of studies have suggested that the 3D structure of the thymic microenvironment might play a key role in regulating the survival and functional competence of thymocytes, I’ve focused my effort on the isolation and purification of the extracellular matrix of the mouse thymus. Specifically, based on the assumption that TEC can favour the differentiation of pre-T lymphocytes, I’ve developed a specific decellularization protocol to obtain the intact, DNA-free extracellular matrix of the adult mouse thymus. Two different protocols satisfied the main characteristics of a decellularized matrix, according to qualitative and quantitative assays. In particular, the quantity of DNA was less than 10% in absolute value, no positive staining for cells was found and the 3D structure and composition of the ECM were maintained. In addition, I was able to prove that the decellularized matrixes were not cytotoxic for the cells themselves, and were able to increase expression of MHC II antigens compared to control cells grown in standard conditions. I was able to prove that TECs grow and proliferate up to ten days on top the decellularized matrix. After a complete characterization of the culture system, these innovative natural scaffolds could be used to improve the standard culture conditions of TEC, to study in vitro the action of different factors on their differentiation genes, and to test the ability of TECs to induce in vitro maturation of seeded T lymphocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Among all cancer types leukemia represents the leading cause of cancer death in man younger than 40 years. Single-target drug therapy has generally been highly ineffective in treating complex diseases such as cancer. A growing interest has been directed toward multi-target drugs able to hit multiple targets. In this context, plant products, based on their intrinsic complexity, could represent an interesting and promising approach. Aim of the research followed during my PhD was to indentify and study novel natural compounds for the treatment of acute leukemias. Two potential multi-target drugs were identified in Hemidesmus indicus and piperlongumine. Methodology/Principal Findings: A variety of cellular assays and flow cytometry were performed on different cell lines. We demonstrated that Hemidesmus modulates many components of intracellular signaling pathways involved in cell viability and proliferation and alters gene and protein expression, eventually leading to tumor cell death, mediated by a loss of mitochondrial transmembrane potential, raise of [Ca2+]i, inhibition of Mcl-1, increasing Bax/Bcl-2 ratio, and ROS formation. Moreover, we proved that the decoction causes differentiation of HL-60 and regulates angiogenesis of HUVECs in hypoxia and normoxia, by the inhibition of new vessel formation and the processes of migration/invasion. Clinically relevant observations are that its cytotoxic activity was also recorded in primary cells from acute myeloid leukemia (AML) patients. Moreover, both Hemidesmus and piperlongumine showed a selective action toward leukemic stem cell (LSC). Conclusions: Our results indicate the molecular basis of the anti-leukemic effects of Hemidesmus indicus and indentify the mitochondrial pathways, [Ca2+]i, cytodifferentiation and angiogenesis inhibition as crucial actors in its anticancer activity. The ability to selectively hit LSC showed by Hemidesmus and piperlongumine enriched the knowledge of their anti-leukemic activity. On these bases, we conclude that Hemidesmus and piperlongumine can represent a valuable strategy in the anticancer pharmacology.