6 resultados para multi-layer dielectric thin film

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theoretical models are developed for the continuous-wave and pulsed laser incision and cut of thin single and multi-layer films. A one-dimensional steady-state model establishes the theoretical foundations of the problem by combining a power-balance integral with heat flow in the direction of laser motion. In this approach, classical modelling methods for laser processing are extended by introducing multi-layer optical absorption and thermal properties. The calculation domain is consequently divided in correspondence with the progressive removal of individual layers. A second, time-domain numerical model for the short-pulse laser ablation of metals accounts for changes in optical and thermal properties during a single laser pulse. With sufficient fluence, the target surface is heated towards its critical temperature and homogeneous boiling or "phase explosion" takes place. Improvements are seen over previous works with the more accurate calculation of optical absorption and shielding of the incident beam by the ablation products. A third, general time-domain numerical laser processing model combines ablation depth and energy absorption data from the short-pulse model with two-dimensional heat flow in an arbitrary multi-layer structure. Layer removal is the result of both progressive short-pulse ablation and classical vaporisation due to long-term heating of the sample. At low velocity, pulsed laser exposure of multi-layer films comprising aluminium-plastic and aluminium-paper are found to be characterised by short-pulse ablation of the metallic layer and vaporisation or degradation of the others due to thermal conduction from the former. At high velocity, all layers of the two films are ultimately removed by vaporisation or degradation as the average beam power is increased to achieve a complete cut. The transition velocity between the two characteristic removal types is shown to be a function of the pulse repetition rate. An experimental investigation validates the simulation results and provides new laser processing data for some typical packaging materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CdTe and Cu(In,Ga)Se2 (CIGS) thin film solar cells are fabricated, electrically characterized and modelled in this thesis. We start from the fabrication of CdTe thin film devices where the R.F. magnetron sputtering system is used to deposit the CdS/CdTe based solar cells. The chlorine post-growth treatment is modified in order to uniformly cover the cell surface and reduce the probability of pinholes and shunting pathways creation which, in turn, reduces the series resistance. The deionized water etching is proposed, for the first time, as the simplest solution to optimize the effect of shunt resistance, stability and metal-semiconductor inter-diffusion at the back contact. In continue, oxygen incorporation is proposed while CdTe layer deposition. This technique has been rarely examined through R.F sputtering deposition of such devices. The above experiments are characterized electrically and optically by current-voltage characterization, scanning electron microscopy, x-ray diffraction and optical spectroscopy. Furthermore, for the first time, the degradation rate of CdTe devices over time is numerically simulated through AMPS and SCAPS simulators. It is proposed that the instability of electrical parameters is coupled with the material properties and external stresses (bias, temperature and illumination). Then, CIGS materials are simulated and characterized by several techniques such as surface photovoltage spectroscopy is used (as a novel idea) to extract the band gap of graded band gap CIGS layers, surface or bulk defect states. The surface roughness is scanned by atomic force microscopy on nanometre scale to obtain the surface topography of the film. The modified equivalent circuits are proposed and the band gap graded profiles are simulated by AMPS simulator and several graded profiles are examined in order to optimize their thickness, grading strength and electrical parameters. Furthermore, the transport mechanisms and Auger generation phenomenon are modelled in CIGS devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic electronics has grown enormously during the last decades driven by the encouraging results and the potentiality of these materials for allowing innovative applications, such as flexible-large-area displays, low-cost printable circuits, plastic solar cells and lab-on-a-chip devices. Moreover, their possible field of applications reaches from medicine, biotechnology, process control and environmental monitoring to defense and security requirements. However, a large number of questions regarding the mechanism of device operation remain unanswered. Along the most significant is the charge carrier transport in organic semiconductors, which is not yet well understood. Other example is the correlation between the morphology and the electrical response. Even if it is recognized that growth mode plays a crucial role into the performance of devices, it has not been exhaustively investigated. The main goal of this thesis was the finding of a correlation between growth modes, electrical properties and morphology in organic thin-film transistors (OTFTs). In order to study the thickness dependence of electrical performance in organic ultra-thin-film transistors, we have designed and developed a home-built experimental setup for performing real-time electrical monitoring and post-growth in situ electrical characterization techniques. We have grown pentacene TFTs under high vacuum conditions, varying systematically the deposition rate at a fixed room temperature. The drain source current IDS and the gate source current IGS were monitored in real-time; while a complete post-growth in situ electrical characterization was carried out. At the end, an ex situ morphological investigation was performed by using the atomic force microscope (AFM). In this work, we present the correlation for pentacene TFTs between growth conditions, Debye length and morphology (through the correlation length parameter). We have demonstrated that there is a layered charge carriers distribution, which is strongly dependent of the growth mode (i.e. rate deposition for a fixed temperature), leading to a variation of the conduction channel from 2 to 7 monolayers (MLs). We conciliate earlier reported results that were apparently contradictory. Our results made evident the necessity of reconsidering the concept of Debye length in a layered low-dimensional device. Additionally, we introduce by the first time a breakthrough technique. This technique makes evident the percolation of the first MLs on pentacene TFTs by monitoring the IGS in real-time, correlating morphological phenomena with the device electrical response. The present thesis is organized in the following five chapters. Chapter 1 makes an introduction to the organic electronics, illustrating the operation principle of TFTs. Chapter 2 presents the organic growth from theoretical and experimental points of view. The second part of this chapter presents the electrical characterization of OTFTs and the typical performance of pentacene devices is shown. In addition, we introduce a correcting technique for the reconstruction of measurements hampered by leakage current. In chapter 3, we describe in details the design and operation of our innovative home-built experimental setup for performing real-time and in situ electrical measurements. Some preliminary results and the breakthrough technique for correlating morphological and electrical changes are presented. Chapter 4 meets the most important results obtained in real-time and in situ conditions, which correlate growth conditions, electrical properties and morphology of pentacene TFTs. In chapter 5 we describe applicative experiments where the electrical performance of pentacene TFTs has been investigated in ambient conditions, in contact to water or aqueous solutions and, finally, in the detection of DNA concentration as label-free sensor, within the biosensing framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis is focused on the study of Organic Semiconducting Single Crystals (OSSCs) and crystalline thin films. In particular solution-grown OSSC, e.g. 4-hdroxycyanobenzene (4HCB) have been characterized in view of their applications as novel sensors of X-rays, gamma-rays, alpha particles radiations and chemical sensors. In the field of ionizing radiation detection, organic semiconductors have been proposed so far mainly as indirect detectors, i.e. as scintillators or as photodiodes. I first study the performance of 4HCB single crystals as direct X-ray detector i.e. the direct photon conversion into an electrical signal, assessing that they can operate at room temperature and in atmosphere, showing a stable and linear response with increasing dose rate. A dedicated study of the collecting electrodes geometry, crystal thickness and interaction volume allowed us to maximize the charge collection efficiency and sensitivity, thus assessing how OSSCs perform at low operating voltages and offer a great potential in the development of novel ionizing radiation sensors. To better understand the processes generating the observed X-ray signal, a comparative study is presented on OSSCs based on several small-molecules: 1,5-dinitronaphthalene (DNN), 1,8-naphthaleneimide (NTI), Rubrene and TIPS-pentacene. In addition, the proof of principle of gamma-rays and alpha particles has been assessed for 4HCB single crystals. I have also carried out an investigation of the electrical response of OSSCs exposed to vapour of volatile molecules, polar and non-polar. The last chapter deals with rubrene, the highest performing molecular crystals for electronic applications. We present an investigation on high quality, millimeter-sized, crystalline thin films (10 – 100 nm thick) realized by exploiting organic molecular beam epitaxy on water-soluble substrates. Space-Charge-Limited Current (SCLC) and photocurrent spectroscopy measurements have been carried out. A thin film transistor was fabricated onto a Cytop® dielectric layer. The FET mobility exceeding 2 cm2/Vs, definitely assess the quality of RUB films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis is focused on the study of innovative Si-based materials for third generation photovoltaics. In particular, silicon oxi-nitride (SiOxNy) thin films and multilayer of Silicon Rich Carbide (SRC)/Si have been characterized in view of their application in photovoltaics. SiOxNy is a promising material for applications in thin-film solar cells as well as for wafer based silicon solar cells, like silicon heterojunction solar cells. However, many issues relevant to the material properties have not been studied yet, such as the role of the deposition condition and precursor gas concentrations on the optical and electronic properties of the films, the composition and structure of the nanocrystals. The results presented in the thesis aim to clarify the effects of annealing and oxygen incorporation within nc-SiOxNy films on its properties in view of the photovoltaic applications. Silicon nano-crystals (Si NCs) embedded in a dielectric matrix were proposed as absorbers in all-Si multi-junction solar cells due to the quantum confinement capability of Si NCs, that allows a better match to the solar spectrum thanks to the size induced tunability of the band gap. Despite the efficient solar radiation absorption capability of this structure, its charge collection and transport properties has still to be fully demonstrated. The results presented in the thesis aim to the understanding of the transport mechanisms at macroscopic and microscopic scale. Experimental results on SiOxNy thin films and SRC/Si multilayers have been obtained at macroscopical and microscopical level using different characterizations techniques, such as Atomic Force Microscopy, Reflection and Transmission measurements, High Resolution Transmission Electron Microscopy, Energy-Dispersive X-ray spectroscopy and Fourier Transform Infrared Spectroscopy. The deep knowledge and improved understanding of the basic physical properties of these quite complex, multi-phase and multi-component systems, made by nanocrystals and amorphous phases, will contribute to improve the efficiency of Si based solar cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent decades, Organic Thin Film Transistors (OTFTs) have attracted lots of interest due to their low cost, large area and flexible properties which have brought them to be considered the building blocks of the future organic electronics. Experimentally, devices based on the same organic material deposited in different ways, i.e. by varying the deposition rate of the molecules, show different electrical performance. As predicted theoretically, this is due to the speed and rate by which charge carriers can be transported by hopping in organic thin films, transport that depends on the molecular arrangement of the molecules. This strongly suggests a correlation between the morphology of the organic semiconductor and the performance of the OTFT and hence motivated us to carry out an in-situ real time SPM study of organic semiconductor growth as an almost unprecedent experiment with the aim to fully describe the morphological evolution of the ultra-thin film and find the relevant morphological parameters affecting the OTFT electrical response. For the case of 6T on silicon oxide, we have shown that the growth mechanism is 2D+3D, with a roughening transition at the third layer and a rapid roughening. Relevant morphological parameters have been extracted by the AFM images. We also developed an original mathematical model to estimate theoretically and more accurately than before, the capacitance of an EFM tip in front of a metallic substrate. Finally, we obtained Ultra High Vacuum (UHV) AFM images of 6T at lying molecules layer both on silicon oxide and on top of 6T islands. Moreover, we performed ex-situ AFM imaging on a bilayer film composed of pentacene (a p-type semiconductor) and C60 (an n-type semiconductor).