5 resultados para mucosal immunity
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Weaning is an important and complex step involving many stresses that interfere deeply with feed intake, gastro-intestinal tract (GIT) development and adaptation to the weaning diet in young pigs. The health of the pig at weaning, its nutrition in the immediate post-weaning period, and the physical, microbiological and psychological environment are all factors that interact to determine food intake and subsequent growth. GIT disorders, infections and diarrhoea increase at the time of weaning, in fact pathogens such as enterotoxigenic Escherichia coli (ETEC) are major causes of mucosal damage in post-weaning disease contributing to diarrhoea in suckling and post-weaned pigs. The European ban in 2006 put on antibiotic growth promoters (AGP) has stimulated research on the mechanisms of GIT disorders and on nutritional approaches for preventing or reducing such disturbances avoiding AGPs. Concerning these aspects here are presented five studies based on the interplay among nutrition, genomic, immunity and physiology with the aim to clarify some of these problematic issues around weaning period in piglets. The first three evaluate the effects of diets threonine or tryptophan enriched on gut defence and health as possible alternatives to AGP in the gut. The fourth is focused on the possible immunological function related with the development of the stomach. The fifth is a pilot study on the gastric sensing and orexygenic signal given by fasting or re-feeding conditions. Although some results are controversial, it appears that both tryptophan and threonine supplementation in weaning diets have a preventive role in E.coli PWD and favorable effects in the gut especially in relation to ETEC susceptible genotype. While the stomach is believed as almost aseptic organ, it shows an immune activity related with the mucosal maturation. Moreover it shows an orexygenic role of both oxyntic mucosa and pyloric mucosa, and its possible relation with nutrient sensing stimuli.
Resumo:
A large fraction of organ transplant recipients develop anti-donor antibodies (DSA), with accelerated graft loss and increased mortality. We tested the hypothesis that erythropoietin (EPO) reduces DSA formation by inhibiting T follicular helper (TFH) cells. We measured DSA levels, splenic TFH, TFR cells, germinal center (GC), and class switched B cells, in murine models of allogeneic sensitization, allogeneic transplantation and in parent-to-F1 models of graft versus host disease (GVHD). We quantified the same cell subsets and specific antibodies, upon EPO or vehicle treatment, in wild type mice and animals lacking EPO receptor selectively on T or B cells, immunized with T-independent or T-dependent stimuli. In vitro, we tested the EPO effect on TFH induction. We isolated TFH and TFR cells to perform in vitro assay and clarify their role. EPO reduced DSA levels, GC, class switched B cells, and increased the TFR/TFH ratio in the heart transplanted mice and in two GVHD models. EPO did also reduce TFH and GC B cells in SRBC-immunized mice, while had no effect in TNP-AECM-FICOLL-immunized animals, indicating that EPO inhibits GC B cells by targeting TFH cells. EPO effects were absent in T cells EPOR conditional KO mice, confirming that EPO affects TFH in vivo through EPOR. In vitro, EPO affected TFH induction through an EPO-EPOR-STAT5-dependent pathway. Suppression assay demonstrated that the reduction of IgG antibodies was dependent on TFH cells, sustaining the central role of the subset in this EPO-mediated mechanism. In conclusion, EPO prevents DSA formation in mice through a direct suppression of TFH. Development of DSA is associated with high risk of graft rejection, giving our data a strong rationale for studies testing the hypothesis that EPO administration prevents their formation in organ transplant recipients. Our findings provide a foundation for testing EPO as a treatment of antibody mediated disease processes.
Resumo:
The study sheds light on the application of the rule of state immunity to sovereign wealth funds (SWFs). SWFs are Janus-faced investment vehicles established by their parent states to invest public resources in financial markets, with the aim of increasing long-term returns and pursuing macroeconomic goals. The ultimate purpose of the study is to assess if the hybrid nature of SWFs results in changes to the rule of state immunity when applied to them, and whether a generally accepted standard in this regard can be deduced from state practice. The research is conducted through a comparative analysis. It is based on the provisions of the UN Convention on Jurisdictional Immunities of States and Their Property (UNCSI), as well as on six domestic jurisdictions (US, UK, France, Germany, Italy and China) among those that have contributed most significantly to the international debate on state immunity and which host the largest amount of SWF investments.
Resumo:
Mucosal melanoma of the head and neck region (MM-H&N) is a rare disease, characterized by a poor prognosis and limited therapeutic strategies, especially regarding targeted therapy (lower rate of targetable mutations compared to cutaneous melanoma) and immunotherapy (lack of diagnostic tools able to predict the response). Meanwhile, bright-field multiplex immunohistochemistry (BF-mIHC) is emerging as a promising tool for characterizing tumor microenvironment (TME) and predicting response to immunotherapy in several tumors, including melanoma. This PhD project aims to develop a BF-mIHC protocol to evaluate the TME in MM-H&N, analyze the correlation between immune markers/immune profiles and MM-H&N features (clinicopathologic and molecular), and find new biomarkers useful for prognostic-therapeutic stratification of these patients. Specific aims are: (I) describe the clinicopathological features of MM-H&N; (II) analyze the molecular status of MM-H&N and correlate it with the clinicopathological features; (III) analyze the molecular status of multiple specimens from the same patient to verify whether molecular heterogeneity of MM-H&N could affect the results with relevant prognostic-therapeutic implications; (IV) develop a BF-mIHC protocol to study TME in MM-H&N; (V) analyze the correlation between immune markers/immune profiles and MM-H&N features (clinicopathologic and molecular) to test whether BF-mIHC could be a promising tool for prognostic-therapeutic characterization of these patients.