2 resultados para mucocutaneous leishmaniasis
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Leishmaniasis is a complex parasitic disease caused by intracellular protozoans of the genus Leishmania mainly transmitted by the bite of sand flies. In Italy, leishmaniasis is caused by Leishmania infantum, responsible for the human visceral and canine leishmaniases (HVL and CanL, respectively). Within Emilia-Romagna region, Italy, recent molecular studies indicated that L. infantum strains circulating in dogs and humans are different. This suggests that an animal reservoir other than dog should be evaluated in the epidemiology of HVL in Emilia-Romagna. Therefore, the main aim of this PhD project was to investigate the role of wild and peridomestic mammals as potential animal reservoirs of L. infantum in the regional zones where HVL foci are still active, also evaluating the possible role of arthropod vectors other than phlebotomine sandflies as vectors of Leishmania spp. in the sylvatic cycle of the protozoa. Overall, 206 specimens of different animal species (roe deer, rats, mice, badgers, hares, polecats, foxes, beech martens, bank voles, hedgehogs, and shrews), collected in Emilia-Romagna were screened for Leishmania with a real-time PCR, revealing a prevalence of 33% for roe deer (first report in this species). Positivity was also found in brown rats (10.6%), black rats (13.1%), mice (10%), badgers (25%), hedgehogs (80%) and bank voles (11%). To distinguish the two strains of L. infantum circulating in Emilia-Romagna, a nested PCR protocol optimized for animal tissues was developed, demonstrating that over 90% of L. infantum infections in roe deer were due to the strain isolated from humans and suggesting their possible role as reservoirs in the study area. Furthermore, the presence of Leishmania kDNA was detected in unfed larvae, nymphs and males of questing Ixodes ricinus ticks collected in regional parks of Emilia-Romagna suggesting their possible role in the transmission of L. infantum in a sylvatic or rural cycle.
Resumo:
Leishmaniasis is one of the major parasitic diseases among neglected tropical diseases with a high rate of morbidity and mortality. Human migration and climate change have spread the disease from limited endemic areas all over the world, also reaching regions in Southern Europe, and causing significant health and economic burden. The currently available treatments are far from ideal due to host toxicity, elevated cost, and increasing rates of drug resistance. Safer and more effective drugs are thus urgently required. Nevertheless, the identification of new chemical entities for leishmaniasis has proven to be incredibly hard and exacerbated by the scarcity of well-validated targets. Trypanothione reductase (TR) represents one robustly validated target in Leishmania that fulfils most of the requirements for a good drug target. However, due to the large and featureless active site, TR is considered extremely challenging and almost undruggable by small molecules. This scenario advocates the development of new chemical entities by unlocking new modalities for leishmaniasis drug discovery. The classical toolbox for drug discovery has enormously expanded in the last decade, and medicinal chemists can now strategize across a variety of new chemical modalities and a vast chemical space, to efficiently modulate challenging targets and provide effective treatments. Beyond others, Targeted p Protein Degradation (TPD) is an emerging strategy that uses small molecules to hijack endogenous proteolysis systems to degrade disease-relevant proteins and thus reduce their abundance in the cell. Based on these considerations, this thesis aimed to develop new strategies for leishmaniasis drug discovery while embracing novel chemical modalities and navigating the chemical space by chasing unprecedented chemotypes. This has been achieved by four complementary projects. We believe that these next-generation chemical modalities for leishmaniasis will play an important role in what was previously thought to be a drug discovery landscape dominated by small molecules.