15 resultados para molecular biochemical characterisation
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
It is well known that the best grape quality can occur only through the achievement of optimal source/sink ratio. Vine balance is in fact a key parameter in controlling berry sugar, acidity and secondary metabolites content (Howell, 2001; Vanden Heuvel et al., 2004). Despite yield reduction and quality improvement are not always strictly related, cluster thinning is considered a technique which could lead to improvement in grape sugar and anthocyanin composition (Dokoozlian and Hirschfelt, 1995; Guidoni et al., 2002). Among several microclimatic variables which may impact grape composition, the effect of cluster light exposure and temperature, which probably act in synergistic and complex way, has been widely explored showing positive even sometimes contradictory results (Spayd et al., 2001; Tarara et al., 2008). Pre-bloom and véraison defoliation are very efficient techniques in inducing cluster microclimatic modification. Furthermore pre-bloom defoliation inducing a lower berry set percentage On these basis the aim of the first experiment of the thesis was to verify in cv Sangiovese the effects on ripening and berry composition of management techniques which may increase source/sink ratio and /or promote light incidence on berries throughout grape ripening. An integrated agronomic, biochemical and microarray approach, aims to understand which mechanisms are involved in berry composition and may be conditioned in the berries during ripening in vines submitted to three treatments. In particular the treatments compared were: a) cluster thinning (increasing in source/sink ratio) b) leaf removal at véraison (increasing cluster light exposure) c) pre-bloom defoliation (increasing source sink ratio and cluster light exposure). Vine response to leaf removal at véraison was further evaluated in the second experiment on three different varieties (Cabernet Sauvignon, Nero d’Avola, Raboso Piave) chosen for their different genetic traits in terms of anthocyanin amount and composition. The integrated agronomic, biochemical and microarray approach, employed in order to understand those mechanisms involved in berry composition of Sangiovese vines submitted to management techniques which may increase source/sink ratio and induce microclimatic changes, bring to interesting results. This research confirmed the main role of source/sink ratio in conditioning sugars metabolism and revealed also that carbohydrates availability is a crucial issue in triggering anthocyanin biosynthesis. More complex is the situation of pre-bloom defoliation, where source/sink and cluster light increase effects are associated to determine final berry composition. It results that the application of pre-bloom defoliation may be risky, as too much dependent on seasonal conditions (rain and temperature) and physiological vine response (leaf area recovery, photosynthetic compensation, laterals regrowth). Early induced stress conditions could bring cluster at véraison in disadvantage to trigger optimal berry ripening processes compared to untreated vines. This conditions could be maintained until harvest, if no previously described physiological recovery occurs. Certainly, light exposure increase linked to defoliation treatments, showed a positive and solid effect on flavonol biosynthesis, as in our conditions temperature was not so different among treatments. Except the last aspects, that could be confirmed also for véraison defoliation, microclimatic changes by themselves seemed not able to induce any modification in berry composition. Further studies are necessary to understand if the peculiar anthocyanic and flavonols composition detected in véraison defoliation could play important role in both color intensity and stability of wines.
Resumo:
The research was carried out to investigate of main elements of salt stress response in two strawberry cultivars, Elsanta and Elsinore. Plants were grown under 0, 10, 20 and 40 mM NaCl for 80 days. Salinity dramatically affected growth in both cultivars, although Elsinore appeared to be more impaired than Elsanta. Moreover a significant reduction of leaf photosynthesis, evaporation, and stomatal conductance was recorded 24 hrs after the stress was applied in both cultivars, whereas physiological functions were differentially restored after acclimation. However, cv. Elsanta had more efficient leaf gas exchange and water status than cv. Elsinore. In general, Fruit yield reduced upon salinization, wheares fruit quality concerning fruit taste, aroma, appearance, total soluble solids and titratable acidity, did not change but rather was enhanced under moderate salinity. On the other hand fruit quality was impaired at severe salt stress. Fruit antioxidant content and antioxidant capacity were enhanced significantly by increasing salt concentration in both cultivars. The oxidative effects of the stress were defined by the measures of some enzymatic activities and lipid peroxidation. Consistently, an increase in superoxide dismutase (SOD), catalase (CAT), peroxide dismutase (POD) enzymes and higher content of proline and soluble proteins were observed in cv. Elsinore than in cv. Elsanta. The increase coincided with a decrease in lipid peroxidation. The research confirmed that although strawberry cultivars were sensitive to salinity, difference between cultivars exist; The experiment revealed that cv. Elsanta could stand severe salt stress, which was lethal to cv. Elsinore. The parameters measured in the previous experiment were proposed as early screening tools for the salt stress response in nine strawberry genotypes. The results showed that, wheares Elsanta and Elsinore cultivars had a lower dry weight reduction at 40 mM NaCl among cultivars, Naiad, Kamila, and Camarosa were the least salt-sensitive cultivars among the screened.
Resumo:
Wine grape must deal with serious problems due to the unfavorable climatic conditions resulted from global warming. High temperatures result in oxidative damages to grape vines. The excessive elevated temperatures are critical for grapevine productivity and survival and contribute to degradation of grape and wine quality and yield. Elevated temperature can negatively affect anthocyanin accumulation in red grape. Particularly, cv. Sangiovese was identified to be very sensitive to such condition. The quantitative real-time PCR analysis showed that flavonoid biosynthetic genes were slightly repressed by high temperature. Also, the heat stress repressed the expression of the transcription factor “VvMYBA1” that activates the expression of UFGT. Moreover, high temperatures had repressing effects on the activity of the flavonoids biosynthetic enzymes “PAL” and “UFGT”.Anthocyanin accumulation in berry skin is due to the balance between its synthesis and oxidation. In grape cv. Sangiovese, the gene transcription and activity of peroxidases enzyme was elevated by heat stress as a defensive mechanism of ROS-scavenging. Among many isoforms of peroxidases genes, one gene (POD 1) was induced in Sangiovese under thermal stress condition. This gene was isolated and evaluated via the technique of genes transformation from grape to Petunia. Reduction in anthocyanins concentration and higher enzymatic activity of peroxidase was observed in POD 1 transformed Petunia after heat shock compared to untrasformed control. Moreover, in wine producing regions, it is inevitable for the grape growers to adopt some adaptive strategies to alleviate grape damages to abiotic stresses. Therefore, in this thesis, the technique of post veraison trimming was done to improve the coupling of phenolic and sugar ripening in Vitis vinifera L. cultivar Sangiovese. Trimming after veraison showed to be executable to slow down the rate of sugar accumulation in grape (to decrease the alcohol potential in wines) without evolution of the main berry flavonoids compounds.
Resumo:
Leberâs hereditary optic neuropathy (LHON) is a mitochondrial disease characterized by a rapid loss of central vision and optic atrophy, due to the selective degeneration of retinal ganglion cells. The age of onset is around 20, and the degenerative process is fast and usually the second eye becomes affected in weeks or months. Even if this pathology is well known and has been well characterized, there are still open questions on its pathophysiology, such as the male prevalence, the incomplete penetrance and the tissue selectivity. This maternally inherited disease is caused by mutations in mitochondrial encoded genes of NADH ubiquinone oxidoreductase (complex I) of the respiratory chain. The 90% of LHON cases are caused by one of the three common mitochondrial DNA mutations (11778/ND4, 14484/ND6 and 3460/ND1) and the remaining 10% is caused by rare pathogenic mutations, reported in literature in one or few families. Moreover, there is also a small subset of patients reported with new putative pathogenic nucleotide changes, which awaits to be confirmed. We here clarify some molecular aspects of LHON, mainly the incomplete penetrance and the role of rare mtDNA mutations or variants on LHON expression, and attempt a possible therapeutic approach using the cybrids cell model. We generated novel structural models for mitochondrial encoded complex I subunits and a conservation analysis and pathogenicity prediction have been carried out for LHON reported mutations. This in-silico approach allowed us to locate LHON pathogenic mutations in defined and conserved protein domains and can be a useful tool in the analysis of novel mtDNA variants with unclear pathogenic/functional role. Four rare LHON pathogenic mutations have been identified, confirming that the ND1 and ND6 genes are mutational hot spots for LHON. All mutations were previously described at least once and we validated their pathogenic role, suggesting the need for their screening in LHON diagnostic protocols. Two novel mtDNA variants with a possible pathogenic role have been also identified in two independent branches of a large pedigree. Functional studies are necessary to define their contribution to LHON in this family. It also been demonstrated that the combination of mtDNA rare polymorphic variants is relevant in determining the maternal recurrence of myoclonus in unrelated LHON pedigrees. Thus, we suggest that particular mtDNA backgrounds and /or the presence of specific rare mutations may increase the pathogenic potential of the primary LHON mutations, thereby giving rise to the extraocular clinical features characteristic of the LHON âplusâ phenotype. We identified the first molecular parameter that clearly discriminates LHON affected individuals from asymptomatic carriers, the mtDNA copy number. This provides a valuable mechanism for future investigations on variable penetrance in LHON. However, the increased mtDNA content in LHON individuals was not correlated to the functional polymorphism G1444A of PGC-1 alpha, the master regulator of mitochondrial biogenesis, but may be due to gene expression of genes involved in this signaling pathway, such as PGC-1 alpha/beta and Tfam. Future studies will be necessary to identify the biochemical effects of rare pathogenic mutations and to validate the novel candidate mutations here described, in terms of cellular bioenergetic characterization of these variants. Moreover, we were not able to induce mitochondrial biogenesis in cybrids cell lines using bezafibrate. However, other cell line models are available, such as fibroblasts harboring LHON mutations, or other approaches can be used to trigger the mitochondrial biogenesis.
Resumo:
Nuclear Magnetic Resonance (NMR) is a branch of spectroscopy that is based on the fact that many atomic nuclei may be oriented by a strong magnetic field and will absorb radiofrequency radiation at characteristic frequencies. The parameters that can be measured on the resulting spectral lines (line positions, intensities, line widths, multiplicities and transients in time-dependent experi-ments) can be interpreted in terms of molecular structure, conformation, molecular motion and other rate processes. In this way, high resolution (HR) NMR allows performing qualitative and quantitative analysis of samples in solution, in order to determine the structure of molecules in solution and not only. In the past, high-field NMR spectroscopy has mainly concerned with the elucidation of chemical structure in solution, but today is emerging as a powerful exploratory tool for probing biochemical and physical processes. It represents a versatile tool for the analysis of foods. In literature many NMR studies have been reported on different type of food such as wine, olive oil, coffee, fruit juices, milk, meat, egg, starch granules, flour, etc using different NMR techniques. Traditionally, univariate analytical methods have been used to ex-plore spectroscopic data. This method is useful to measure or to se-lect a single descriptive variable from the whole spectrum and , at the end, only this variable is analyzed. This univariate methods ap-proach, applied to HR-NMR data, lead to different problems due especially to the complexity of an NMR spectrum. In fact, the lat-ter is composed of different signals belonging to different mole-cules, but it is also true that the same molecules can be represented by different signals, generally strongly correlated. The univariate methods, in this case, takes in account only one or a few variables, causing a loss of information. Thus, when dealing with complex samples like foodstuff, univariate analysis of spectra data results not enough powerful. Spectra need to be considered in their wholeness and, for analysing them, it must be taken in consideration the whole data matrix: chemometric methods are designed to treat such multivariate data. Multivariate data analysis is used for a number of distinct, differ-ent purposes and the aims can be divided into three main groups: • data description (explorative data structure modelling of any ge-neric n-dimensional data matrix, PCA for example); • regression and prediction (PLS); • classification and prediction of class belongings for new samples (LDA and PLS-DA and ECVA). The aim of this PhD thesis was to verify the possibility of identify-ing and classifying plants or foodstuffs, in different classes, based on the concerted variation in metabolite levels, detected by NMR spectra and using the multivariate data analysis as a tool to inter-pret NMR information. It is important to underline that the results obtained are useful to point out the metabolic consequences of a specific modification on foodstuffs, avoiding the use of a targeted analysis for the different metabolites. The data analysis is performed by applying chemomet-ric multivariate techniques to the NMR dataset of spectra acquired. The research work presented in this thesis is the result of a three years PhD study. This thesis reports the main results obtained from these two main activities: A1) Evaluation of a data pre-processing system in order to mini-mize unwanted sources of variations, due to different instrumental set up, manual spectra processing and to sample preparations arte-facts; A2) Application of multivariate chemiometric models in data analy-sis.
Resumo:
60 strains (belonging to the genera Lactobacillus, Bifidobacterium, Leuconostoc and Enterococcus) were tested for their capacity to inhibit the growth of 3 strains of Campylobacter jejuni: Lactobacilli and bifidobacteria were left to grow in MRS or TPY broth at 37°C overnight in anaerobic conditions; Campylobacter jejuni was inoculated in blood agar plates at 37°C for 24-48 hours in microaerophilic conditions. The inhibition experiments were carried out in vitro using ”Spot agar test” and “Well diffusion assay” techniques testing both cellular activity and that of the surnatant. 11 strains proved to inhibit the growth of Campylobacter jejuni. These strains were subsequently analised analised in order to evaluate the resistance to particular situations of stress which are found in the gastrointestinal tract and during the industrial transformation processes (Starvation stress, osmotic stress, heat stress, resistance to pH and to bile salts). Resistance to starvation stress: all strains seemed to resist the stress (except one strain). Resistance to osmotic stress: all strains were relatively resistant to the concentrations of 6% w/v of NaCl (except one strain). Resistance to heat stress: only one strain showed little resistance to the 55°C temperature. Resistance to pH: In the presence of a low pH (2.5), many strains rapidly lost their viability after approximately 1 hour. Resistance to bile salts: Except for one strain, all strains seemed to be relatively resistant to the 2% w/v concentration of bile salts. Afterward, strains were identified by using phenotipic and molecular techniques. Phenotipic identification was carried out by using API 50 CHL (bioMérieux) and API 20 STREP identification system (bioMérieux); molecular identification with species-specific PCR: the molecular techniques confirmed the results by phenotipic identification. For testing the antibiotic resistance profile, bacterial strains were subcultured in MRS or TPY broth and incubated for 18 h at 37°C under anaerobic conditions. Antibiotics tested (Tetracycline, Trimethoprim, Cefuroxime, Kanamycin, Chloramphenicol, Vancomycin, Ampycillin, Sterptomycin, Erythromycin) were diluted to the final concentrations of: 2,4,8,16,32,64,128,256 mg/ml. Then, 20 μl fresh bacterial culture (final concentration in the plates approximately 106 cfu/ml) were added to 160 μl MRS or TPY broth and 20 μl antibiotic solution. As positive control the bacterial culture (20 ul) was added to broth (160 ul) and water (20 ul). Test was performed on plates P96, that after the inoculum were incubated for 24 h at 37oC, then the antibiotic resistance was determined by measuring the Optical Density (OD) at 620 nm with Multiscan EX. All strains showed a similar behaviour: resistance to all antibiotic tested. Further studies are needed.
Resumo:
Although nickel is a toxic metal for living organisms in its soluble form, its importance in many biological processes recently emerged. In this view, the investigation of the nickel-dependent enzymes urease and [NiFe]-hydrogenase, especially the mechanism of nickel insertion into their active sites, represent two intriguing case studies to understand other analogous systems and therefore to lead to a comprehension of the nickel trafficking inside the cell. Moreover, these two enzymes have been demonstrated to ensure survival and colonization of the human pathogen H. pylori, the only known microorganism able to proliferate in the gastric niche. The right nickel delivering into the urease active site requires the presence of at least four accessory proteins, UreD, UreE, UreF and UreG. Similarly, analogous process is principally mediated by HypA and HypB proteins in the [NiFe]-hydrogenase system. Indeed, HpHypA and HpHypB also have been proposed to act in the activation of the urease enzyme from H. pylori, probably mobilizing nickel ions from HpHypA to the HpUreE-HpUreG complex. A complete comprehension of the interaction mechanism between the accessory proteins and the crosstalk between urease and hydrogenase accessory systems requires the determination of the role of each protein chaperone that strictly depends on their structural and biochemical properties. The availability of HpUreE, HpUreG and HpHypA proteins in a pure form is a pre-requisite to perform all the subsequent protein characterizations, thus their purification was the first aim of this work. Subsequently, the structural and biochemical properties of HpUreE were investigated using multi-angle and quasi-elastic light scattering, as well as NMR and circular dichroism spectroscopy. The thermodynamic parameters of Ni2+ and Zn2+ binding to HpUreE were principally established using isothermal titration calorimetry and the importance of key histidine residues in the process of binding metal ions was studied using site-directed mutagenesis. The molecular details of the HpUreE-HpUreG and HpUreE-HpHypA protein-protein assemblies were also elucidated. The interaction between HpUreE and HpUreG was investigated using ITC and NMR spectroscopy, and the influence of Ni2+ and Zn2+ metal ions on the stabilization of this association was established using native gel electrophoresis, light scattering and thermal denaturation scanning followed by CD spectroscopy. Preliminary HpUreE-HpHypA interaction studies were conducted using ITC. Finally, the possible structural architectures of the two protein-protein assemblies were rationalized using homology modeling and docking computational approaches. All the obtained data were interpreted in order to achieve a more exhaustive picture of the urease activation process, and the correlation with the accessory system of the hydrogenase enzyme, considering the specific role and activity of the involved protein players. A possible function for Zn2+ in the chaperone network involved in Ni2+ trafficking and urease activation is also envisaged.
Resumo:
The DOMON domain is a domain widespread in nature, predicted to fold in a β-sandwich structure. In plants, AIR12 is constituted by a single DOMON domain located in the apoplastic space and is GPI-modified for anchoring to the plasma membrane. Arabidopsis thaliana AIR12 has been heterologously expressed as a recombinant protein (recAtAIR12) in Pichia pastoris. Spectrophotometrical analysis of the purified protein showed that recAtAir12 is a cytochrome b. RecAtAIR12 is highly glycosylated, it is reduced by ascorbate, superoxide and naftoquinones, oxidised by monodehydroascorbate and oxygen and insensitive to hydrogen peroxide. The addition of recAtAIR12 to permeabilized plasma membranes containing NADH, FeEDTA and menadione, caused a statistically significant increase in hydroxyl radicals as detected by electron paramagnetic resonance. In these conditions, recAtAIR12 has thus a pro-oxidant role. Interestingly, AIR12 is related to the cytochrome domain of cellobiose dehydrogenase which is involved in lignin degradation, possibly via reactive oxygen species (ROS) production. In Arabidopsis the Air12 promoter is specifically activated at sites where cell separations occur and ROS, including •OH, are involved in cell wall modifications. air12 knock-out plants infected with Botrytis cinerea are more resistant than wild-type and air12 complemented plants. Also during B. cinerea infection, cell wall modifications and ROS are involved. Our results thus suggest that AIR12 could be involved in cell wall modifying reactions by interacting with ROS and ascorbate. CyDOMs are plasma membrane redox proteins of plants that are predicted to contain an apoplastic DOMON fused with a transmembrane cytochrome b561 domain. CyDOMs have never been purified nor characterised. The trans-membrane portion of a soybean CyDOM was expressed in E. coli but purification could not be achieved. The DOMON domain was expressed in P. pastoris and shown to be itself a cytochrome b that could be reduced by ascorbate.
Resumo:
The study of the bio-recognition phenomena behind a biological process is nowadays considered a useful tool to deeply understand physiological mechanisms allowing the discovery of novel biological target and the development of new lead candidates. Moreover, understanding this kind of phenomena can be helpful in characterizing absorption, distribution, metabolism, elimination and toxicity properties of a new drug (ADMET parameters). Recent estimations show that about half of all drugs in development fail to make it to the market because of ADMET deficiencies; thus a rapid determination of ADMET parameters in early stages of drug discovery would save money and time, allowing to choose the better compound and to eliminate any losers. The monitoring of drug binding to plasma proteins is becoming essential in the field of drug discovery to characterize the drug distribution in human body. Human serum albumin (HSA) is the most abundant protein in plasma playing a fundamental role in the transport of drugs, metabolites and endogenous factors; so the study of the binding mechanism to HSA has become crucial to the early characterization of the pharmacokinetic profile of new potential leads. Furthermore, most of the distribution experiments carried out in vivo are performed on animals. Hence it is interesting to determine the binding of new compounds to albumins from different species to evaluate the reliability of extrapolating the distribution data obtained in animals to humans. It is clear how the characterization of interactions between proteins and drugs determines a growing need of methodologies to study any specific molecular event. A wide variety of biochemical techniques have been applied to this purpose. High-performance liquid affinity chromatography, circular dichroism and optical biosensor represent three techniques that can be able to elucidate the interaction of a new drug with its target and with others proteins that could interfere with ADMET parameters.
Resumo:
Urease is a nickel-dependent enzyme that catalyzes hydrolysis of urea in the last step of organic nitrogen mineralization. Its active site contains a dinuclear center for Ni(II) ions that must be inserted into the apo-enzyme through the action of four accessory proteins (UreD, UreE, UreF, UreG) leading to activation of urease. UreE, acting as a metallo-chaperone, delivers Ni(II) to the preformed complex of apo-urease-UreDFG and has the capability to enhance the GTPase activity of UreG. This study, focused on characterization of UreE from Sporosarcina pasteurii (SpUreE), represents a piece of information on the structure/mobility-function relationships that control nickel binding by SpUreE and its interaction with SpUreG. A calorimetric analysis revealed the occurrence of a binding event between these proteins with positive cooperativity and a stoichiometry consistent with the formation of the (UreE)2-(UreG)2 hetero-oligomer complex. Chemical Shift Perturbations induced by the protein-protein interaction were analyzed using high-resolution NMR spectroscopy, which allowed to characterize the molecular details of the protein surface of SpUreE involved in the complex formation with SpUreG. Moreover, backbone dynamic properties of SpUreE, determined using 15N relaxation analysis, revealed a general mobility in the nanoseconds time-scale, with the fastest motions observed at the C-termini. The latter analysis made it possible for the first time to characterize of the C-terminal portions, known to contain key residues for metal ion binding, that were not observed in the crystal structure of UreE because of disorder. The residues belonging to this portion of SpUreE feature large CSPs upon addition of SpUreG, showing that their chemical environment is directly affected by protein-protein interaction. Metal ion selectivity and affinity of SpUreE for cognate Ni(II) and non cognate Zn(II) metal ions were determined, and the ability of the protein to select Ni(II) over Zn(II), in consistency with the proposed role in Ni(II) cations transport, was established.
Resumo:
Primary glioblastoma (GB), the most common and aggressive adult brain tumour, is refractory to conventional therapies and characterised by poor prognosis. GB displays striking cellular heterogeneity, with a sub-population, called Glioblastoma Stem Cells (GSCs), intrinsically resistant to therapy, hence the high rate of recurrence. Alterations of the tumour suppressor gene PTEN are prevalent in primary GBM, resulting in the inhibition of the polarity protein Lgl1 due to aPKC hyperactivation. Dysregulation of this molecular axis is one of the mechanisms involved in GSC maintenance. After demonstrating that the PTEN/aPKC/Lgl axis is conserved in Drosophila, I deregulated it in different cells populations of the nervous system in order to individuate the cells at the root of neurogenic brain cancers. This analysis identified the type II neuroblasts (NBs) as the most sensitive to alterations of this molecular axis. Type II NBs are a sub-population of Drosophila stem cells displaying a lineage similar to that of the mammalian neural stem cells. Following aPKC activation in these stem cells, I obtained an adult brain cancer model in Drosophila that summarises many phenotypic traits of human brain tumours. Fly tumours are indeed characterised by accumulation of highly proliferative immature cells and keep growing in the adult leading the affected animals to premature death. With the aim to understand the role of cell polarity disruption in this tumorigenic process I carried out a molecular characterisation and transcriptome analysis of brain cancers from our fly model. In summary, the model I built and partially characterised in this thesis work may help deepen our knowledge on human brain cancers by investigating many different aspects of this complicate disease.
Resumo:
The two-metal-ion architecture is a structural feature found in a variety of RNA processing metalloenzymes or ribozymes (RNA-based enzymes), which control the biogenesis and the metabolism of vital RNAs, including non-coding RNAs (ncRNAs). Notably, such ncRNAs are emerging as key players for the regulation of cellular homeostasis, and their altered expression has been often linked to the development of severe human pathologies, from cancer to mental disorders. Accordingly, understanding the biological processing of ncRNAs is foundational for the development of novel therapeutic strategies and tools. Here, we use state-of the-art molecular simulations, complemented with X-ray crystallography and biochemical experiments, to characterize the RNA processing cycle as catalyzed by two two-metal-ion enzymes: the group II intron ribozymes and the RNase H1. We show that multiple and diverse cations are strategically recruited at and timely released from the enzymes’ active site during catalysis. Such a controlled cations’ trafficking leads to the recursive formation and disruption of an extended two-metal ion architecture that is functional for RNA-hydrolysis – from substrate recruitment to product release. Importantly, we found that these cations’ binding sites are conserved among other RNA-processing machineries, including the human spliceosome and CRISPR-Cas systems, suggesting that an evolutionarily-converged catalytic strategy is adopted by these enzymes to process RNA molecules. Thus, our findings corroborate and sensibly extend the current knowledge of two-metal-ion enzymes, and support the design of novel drugs targeting RNA-processing metalloenzymes or ribozymes as well as the rational engineering of novel programmable gene-therapy tools.
Resumo:
Background and Objectives: Carotid revascularization to prevent future vascular events is reasonable in patients with high-grade carotid stenosis. Currently, several biomarkers to predict carotid plaque development and progression have been investigated, among which microRNAs (miRs) are promising tools for the diagnosis of atherosclerosis. Methods and Results: A total of 49 participants were included in the study, divided into two main populations: Population 1 comprising symptomatic and asymptomatic inpatients, and Population 2 comprising asymptomatic outpatients. The study consisted of two main phases: a preliminary discovery phase and a validation phase, applying different techniques. MiR-profiles were performed on plasma and plaque tissue samples obtained from 4 symptomatic and 4 asymptomatic inpatients. MiRs emerging from profiling comparisons, i.e. miR-126-5p, miR-134-5p, miR-145-5p, miR-151a-5p, miR-34b, miR-451a, miR-720 and miR-1271-5p, were subjected to validation through RT-qPCR analysis in the total cohort of donors. Comparing asymptomatic and symptomatic inpatients, significant differences were reported in the expression levels of c-miRs for miR-126-5p and miR-1271-5p in blood, being more expressed in symptomatic subjects. In contrast, simultaneous evaluation of the selected miRs in plaque tissue samples did not confirm data obtained by the miR profiling, and no significant differences were observed. Using Receiver-Operating Characteristic (ROC) analysis, a circulating molecular signature (mir-126-5p, miR-1271-5p, albumin, C-reactive protein, and monocytes) was identified, allowing the distinction of the two groups in Population 1 (AUC = 0.795). Conclusions: Data emerging from this thesis suggest that c-miRs (i.e. miR-126-5p, miR-1271-5p) combined with selected haemato-biochemical parameters (albumin, C-reactive protein, and monocytes) produced a good molecular 'signature' to distinguish asymptomatic and symptomatic inpatients. C-miRs in blood do not necessarily reflect the expression levels of the same miRs in carotid plaque tissues since different mechanism can influence their expression.