4 resultados para model diagnosis

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the last few years the resolution of numerical weather prediction (nwp) became higher and higher with the progresses of technology and knowledge. As a consequence, a great number of initial data became fundamental for a correct initialization of the models. The potential of radar observations has long been recognized for improving the initial conditions of high-resolution nwp models, while operational application becomes more frequent. The fact that many nwp centres have recently taken into operations convection-permitting forecast models, many of which assimilate radar data, emphasizes the need for an approach to providing quality information which is needed in order to avoid that radar errors degrade the model's initial conditions and, therefore, its forecasts. Environmental risks can can be related with various causes: meteorological, seismical, hydrological/hydraulic. Flash floods have horizontal dimension of 1-20 Km and can be inserted in mesoscale gamma subscale, this scale can be modeled only with nwp model with the highest resolution as the COSMO-2 model. One of the problems of modeling extreme convective events is related with the atmospheric initial conditions, in fact the scale dimension for the assimilation of atmospheric condition in an high resolution model is about 10 Km, a value too high for a correct representation of convection initial conditions. Assimilation of radar data with his resolution of about of Km every 5 or 10 minutes can be a solution for this problem. In this contribution a pragmatic and empirical approach to deriving a radar data quality description is proposed to be used in radar data assimilation and more specifically for the latent heat nudging (lhn) scheme. Later the the nvective capabilities of the cosmo-2 model are investigated through some case studies. Finally, this work shows some preliminary experiments of coupling of a high resolution meteorological model with an Hydrological one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern control systems are becoming more and more complex and control algorithms more and more sophisticated. Consequently, Fault Detection and Diagnosis (FDD) and Fault Tolerant Control (FTC) have gained central importance over the past decades, due to the increasing requirements of availability, cost efficiency, reliability and operating safety. This thesis deals with the FDD and FTC problems in a spacecraft Attitude Determination and Control System (ADCS). Firstly, the detailed nonlinear models of the spacecraft attitude dynamics and kinematics are described, along with the dynamic models of the actuators and main external disturbance sources. The considered ADCS is composed of an array of four redundant reaction wheels. A set of sensors provides satellite angular velocity, attitude and flywheel spin rate information. Then, general overviews of the Fault Detection and Isolation (FDI), Fault Estimation (FE) and Fault Tolerant Control (FTC) problems are presented, and the design and implementation of a novel diagnosis system is described. The system consists of a FDI module composed of properly organized model-based residual filters, exploiting the available input and output information for the detection and localization of an occurred fault. A proper fault mapping procedure and the nonlinear geometric approach are exploited to design residual filters explicitly decoupled from the external aerodynamic disturbance and sensitive to specific sets of faults. The subsequent use of suitable adaptive FE algorithms, based on the exploitation of radial basis function neural networks, allows to obtain accurate fault estimations. Finally, this estimation is actively exploited in a FTC scheme to achieve a suitable fault accommodation and guarantee the desired control performances. A standard sliding mode controller is implemented for attitude stabilization and control. Several simulation results are given to highlight the performances of the overall designed system in case of different types of faults affecting the ADCS actuators and sensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer is a challenging disease that involves multiple types of biological interactions in different time and space scales. Often computational modelling has been facing problems that, in the current technology level, is impracticable to represent in a single space-time continuum. To handle this sort of problems, complex orchestrations of multiscale models is frequently done. PRIMAGE is a large EU project that aims to support personalized childhood cancer diagnosis and prognosis. The goal is to do so predicting the growth of the solid tumour using multiscale in-silico technologies. The project proposes an open cloud-based platform to support decision making in the clinical management of paediatric cancers. The orchestration of predictive models is in general complex and would require a software framework that support and facilitate such task. The present work, proposes the development of an updated framework, referred herein as the VPH-HFv3, as a part of the PRIMAGE project. This framework, a complete re-writing with respect to the previous versions, aims to orchestrate several models, which are in concurrent development, using an architecture as simple as possible, easy to maintain and with high reusability. This sort of problem generally requires unfeasible execution times. To overcome this problem was developed a strategy of particularisation, which maps the upper-scale model results into a smaller number and homogenisation which does the inverse way and analysed the accuracy of this approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fabry disease (FD), X-linked metabolic disorder caused by a deficiency in α-galactosidase A activity, leads to the accumulation of glycosphingolipids, mainly Gb3 and lyso-Gb3, in several organs. Gastrointestinal (GI) symptoms are among the earliest and most common, strongly impacting patients’ quality of life. However, the origin of these symptoms and the exact mechanisms of pathogenesis are still poorly understood, thus the pressing need to improve their knowledge. Here we aimed to evaluate whether a FD murine model (α-galactosidase A Knock-Out) captures the functional GI issues experienced by patients. In particular, the potential mechanisms involved in the development and maintenance of GI symptoms were explored by looking at the microbiota-gut-brain axis involvement. Moreover, we sought to examine the effects of lyso-Gb3 on colonic contractility and the intestinal epithelium and the enteric nervous system, which together play important roles in regulating intestinal ion transport and fluid and electrolyte homeostasis. Fabry mice revealed visceral hypersensitivity and a diarrhea-like phenotype accompanied by anxious-like behavior and reduced locomotor activity. They reported also an imbalance of SCFAs and an early compositional and functional dysbiosis of the gut microbiota, which partly persisted with advancing age. Moreover, overexpression of TRPV1 was found in affected mice, and partial alteration of TRPV4 and TRPA1 as well, identifying them as possible therapeutic targets. The Ussing chamber results after treatment with lyso-Gb3 showed an increase in Isc (likely mediated by HCO3- ions movement) which affects neuron-mediated secretion, especially capsaicin- and partly veratridine-mediated. This first characterization of gut-brain axis dysfunction in FD mouse provides functional validation of the model, suggesting new targets and possible therapeutic approaches. Furthermore, lyso-Gb3 is confirmed to be not only a marker for the diagnosis and follow-up of FD but also a possible player in the alteration of the FD colonic ion transport process.