7 resultados para mindfulness-based mobile apps
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The continuous advancements and enhancements of wireless systems are enabling new compelling scenarios where mobile services can adapt according to the current execution context, represented by the computational resources available at the local device, current physical location, people in physical proximity, and so forth. Such services called context-aware require the timely delivery of all relevant information describing the current context, and that introduces several unsolved complexities, spanning from low-level context data transmission up to context data storage and replication into the mobile system. In addition, to ensure correct and scalable context provisioning, it is crucial to integrate and interoperate with different wireless technologies (WiFi, Bluetooth, etc.) and modes (infrastructure-based and ad-hoc), and to use decentralized solutions to store and replicate context data on mobile devices. These challenges call for novel middleware solutions, here called Context Data Distribution Infrastructures (CDDIs), capable of delivering relevant context data to mobile devices, while hiding all the issues introduced by data distribution in heterogeneous and large-scale mobile settings. This dissertation thoroughly analyzes CDDIs for mobile systems, with the main goal of achieving a holistic approach to the design of such type of middleware solutions. We discuss the main functions needed by context data distribution in large mobile systems, and we claim the precise definition and clean respect of quality-based contracts between context consumers and CDDI to reconfigure main middleware components at runtime. We present the design and the implementation of our proposals, both in simulation-based and in real-world scenarios, along with an extensive evaluation that confirms the technical soundness of proposed CDDI solutions. Finally, we consider three highly heterogeneous scenarios, namely disaster areas, smart campuses, and smart cities, to better remark the wide technical validity of our analysis and solutions under different network deployments and quality constraints.
Resumo:
The industrial context is changing rapidly due to advancements in technology fueled by the Internet and Information Technology. The fourth industrial revolution counts integration, flexibility, and optimization as its fundamental pillars, and, in this context, Human-Robot Collaboration has become a crucial factor for manufacturing sustainability in Europe. Collaborative robots are appealing to many companies due to their low installation and running costs and high degree of flexibility, making them ideal for reshoring production facilities with a short return on investment. The ROSSINI European project aims to implement a true Human-Robot Collaboration by designing, developing, and demonstrating a modular and scalable platform for integrating human-centred robotic technologies in industrial production environments. The project focuses on safety concerns related to introducing a cobot in a shared working area and aims to lay the groundwork for a new working paradigm at the industrial level. The need for a software architecture suitable to the robotic platform employed in one of three use cases selected to deploy and test the new technology was the main trigger of this Thesis. The chosen application consists of the automatic loading and unloading of raw-material reels to an automatic packaging machine through an Autonomous Mobile Robot composed of an Autonomous Guided Vehicle, two collaborative manipulators, and an eye-on-hand vision system for performing tasks in a partially unstructured environment. The results obtained during the ROSSINI use case development were later used in the SENECA project, which addresses the need for robot-driven automatic cleaning of pharmaceutical bins in a very specific industrial context. The inherent versatility of mobile collaborative robots is evident from their deployment in the two projects with few hardware and software adjustments. The positive impact of Human-Robot Collaboration on diverse production lines is a motivation for future investments in research on this increasingly popular field by the industry.
Resumo:
The dynamicity and heterogeneity that characterize pervasive environments raise new challenges in the design of mobile middleware. Pervasive environments are characterized by a significant degree of heterogeneity, variability, and dynamicity that conventional middleware solutions are not able to adequately manage. Originally designed for use in a relatively static context, such middleware systems tend to hide low-level details to provide applications with a transparent view on the underlying execution platform. In mobile environments, however, the context is extremely dynamic and cannot be managed by a priori assumptions. Novel middleware should therefore support mobile computing applications in the task of adapting their behavior to frequent changes in the execution context, that is, it should become context-aware. In particular, this thesis has identified the following key requirements for novel context-aware middleware that existing solutions do not fulfil yet. (i) Middleware solutions should support interoperability between possibly unknown entities by providing expressive representation models that allow to describe interacting entities, their operating conditions and the surrounding world, i.e., their context, according to an unambiguous semantics. (ii) Middleware solutions should support distributed applications in the task of reconfiguring and adapting their behavior/results to ongoing context changes. (iii) Context-aware middleware support should be deployed on heterogeneous devices under variable operating conditions, such as different user needs, application requirements, available connectivity and device computational capabilities, as well as changing environmental conditions. Our main claim is that the adoption of semantic metadata to represent context information and context-dependent adaptation strategies allows to build context-aware middleware suitable for all dynamically available portable devices. Semantic metadata provide powerful knowledge representation means to model even complex context information, and allow to perform automated reasoning to infer additional and/or more complex knowledge from available context data. In addition, we suggest that, by adopting proper configuration and deployment strategies, semantic support features can be provided to differentiated users and devices according to their specific needs and current context. This thesis has investigated novel design guidelines and implementation options for semantic-based context-aware middleware solutions targeted to pervasive environments. These guidelines have been applied to different application areas within pervasive computing that would particularly benefit from the exploitation of context. Common to all applications is the key role of context in enabling mobile users to personalize applications based on their needs and current situation. The main contributions of this thesis are (i) the definition of a metadata model to represent and reason about context, (ii) the definition of a model for the design and development of context-aware middleware based on semantic metadata, (iii) the design of three novel middleware architectures and the development of a prototypal implementation for each of these architectures, and (iv) the proposal of a viable approach to portability issues raised by the adoption of semantic support services in pervasive applications.
Resumo:
This thesis presents some different techniques designed to drive a swarm of robots in an a-priori unknown environment in order to move the group from a starting area to a final one avoiding obstacles. The presented techniques are based on two different theories used alone or in combination: Swarm Intelligence (SI) and Graph Theory. Both theories are based on the study of interactions between different entities (also called agents or units) in Multi- Agent Systems (MAS). The first one belongs to the Artificial Intelligence context and the second one to the Distributed Systems context. These theories, each one from its own point of view, exploit the emergent behaviour that comes from the interactive work of the entities, in order to achieve a common goal. The features of flexibility and adaptability of the swarm have been exploited with the aim to overcome and to minimize difficulties and problems that can affect one or more units of the group, having minimal impact to the whole group and to the common main target. Another aim of this work is to show the importance of the information shared between the units of the group, such as the communication topology, because it helps to maintain the environmental information, detected by each single agent, updated among the swarm. Swarm Intelligence has been applied to the presented technique, through the Particle Swarm Optimization algorithm (PSO), taking advantage of its features as a navigation system. The Graph Theory has been applied by exploiting Consensus and the application of the agreement protocol with the aim to maintain the units in a desired and controlled formation. This approach has been followed in order to conserve the power of PSO and to control part of its random behaviour with a distributed control algorithm like Consensus.
Resumo:
This research based on 3 indipendent studies, sought to explore the nature of the relationship between overweight/obesity, eating behaviors and psychological distress; the construct of Mindful eating trough the validation of the Italian adaptation of the Mindful Eating Questionnaire (MEQ); the role of mindfulnessand mindful eating as respectively potential mediator and moderator between overeating behavior (binge eating and emotional overeating) and negative outcomes (psychological distress, body dissatisfaction). All the samples were divided in normal weight, overweight and obese according to BMI categories. STUDY1: In a sample of 691 subjects (69.6% female, mean aged 39.26 years) was found that BMI was not associated with psychological distress, whereas binge eating increases the psychopathological level. BMI and male gender represent negative predictors of psychological distress, but certain types of overeating (i.e., NES/grazing, overeating during or out of meals, and guilt/restraint) result as positive predictors.. STUDY 2 : A sample of 1067 subjects (61.4% female, mean aged 34 years) was analized. The Italian MEQ resulted in a 26-item 4-factor model measuring Disinhibition, Awareness, Distraction, and Emotional response. Internal consistency and test-retest reliability were acceptable MEQ correlated positively with mindfulness (FMI) and it was associated with sociodemographic variables, BMI, meditation. type of exercise and diet. STUDY 3, based on a sample of 502 subjects (68.8% female, mean aged 39.42 years) showed that MEQ and FMI negatively correlated with BES, EOQ, SCL-90-R, and BIAQ. Obese people showed lower level of mindful eating and higher levels of binge eating, emotional overeating, and body dissatisfaction, compared to the other groups Mindfulness resulted to partially mediates the relationship between a) binge eating and psychological distress, b) emotional overeating and psychological distress, c) binge eating and mental well-being, d) emotional overeating and menal well-being. Mindful eating was a moderator only in the relationship between emotional overeating and body dissatisfaction.
Resumo:
Recent years observed massive growth in wearable technology, everything can be smart: phones, watches, glasses, shirts, etc. These technologies are prevalent in various fields: from wellness/sports/fitness to the healthcare domain. The spread of this phenomenon led the World-Health-Organization to define the term 'mHealth' as "medical and public health practice supported by mobile devices, such as mobile phones, patient monitoring devices, personal digital assistants, and other wireless devices". Furthermore, mHealth solutions are suitable to perform real-time wearable Biofeedback (BF) systems: sensors in the body area network connected to a processing unit (smartphone) and a feedback device (loudspeaker) to measure human functions and return them to the user as (bio)feedback signal. During the COVID-19 pandemic, this transformation of the healthcare system has been dramatically accelerated by new clinical demands, including the need to prevent hospital surges and to assure continuity of clinical care services, allowing pervasive healthcare. Never as of today, we can say that the integration of mHealth technologies will be the basis of this new era of clinical practice. In this scenario, this PhD thesis's primary goal is to investigate new and innovative mHealth solutions for the Assessment and Rehabilitation of different neuromotor functions and diseases. For the clinical assessment, there is the need to overcome the limitations of subjective clinical scales. Creating new pervasive and self-administrable mHealth solutions, this thesis investigates the possibility of employing innovative systems for objective clinical evaluation. For rehabilitation, we explored the clinical feasibility and effectiveness of mHealth systems. In particular, we developed innovative mHealth solutions with BF capability to allow tailored rehabilitation. The main goal that a mHealth-system should have is improving the person's quality of life, increasing or maintaining his autonomy and independence. To this end, inclusive design principles might be crucial, next to the technical and technological ones, to improve mHealth-systems usability.
Resumo:
This thesis deals with robust adaptive control and its applications, and it is divided into three main parts. The first part is about the design of robust estimation algorithms based on recursive least squares. First, we present an estimator for the frequencies of biased multi-harmonic signals, and then an algorithm for distributed estimation of an unknown parameter over a network of adaptive agents. In the second part of this thesis, we consider a cooperative control problem over uncertain networks of linear systems and Kuramoto systems, in which the agents have to track the reference generated by a leader exosystem. Since the reference signal is not available to each network node, novel distributed observers are designed so as to reconstruct the reference signal locally for each agent, and therefore decentralizing the problem. In the third and final part of this thesis, we consider robust estimation tasks for mobile robotics applications. In particular, we first consider the problem of slip estimation for agricultural tracked vehicles. Then, we consider a search and rescue application in which we need to drive an unmanned aerial vehicle as close as possible to the unknown (and to be estimated) position of a victim, who is buried under the snow after an avalanche event. In this thesis, robustness is intended as an input-to-state stability property of the proposed identifiers (sometimes referred to as adaptive laws), with respect to additive disturbances, and relative to a steady-state trajectory that is associated with a correct estimation of the unknown parameter to be found.