3 resultados para microwave spectrum
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis focuses on studying molecular structure and internal dynamics by using pulsed jet Fourier transform microwave (PJ-FTMW) spectroscopy combined with theoretical calculations. Several kinds of interesting chemical problems are investigated by analyzing the MW spectra of the corresponding molecular systems. First, the general aspects of rotational spectroscopy are summarized, and then the basic theory on molecular rotation and experimental method are described briefly. ab initio and density function theory (DFT) calculations that used in this thesis to assist the assignment of rotational spectrum are also included. From chapter 3 to chapter 8, several molecular systems concerning different kind of general chemical problems are presented. In chapter 3, the conformation and internal motions of dimethyl sulfate are reported. The internal rotations of the two methyl groups split each rotational transition into several components line, allowing for the determination of accurate values of the V3 barrier height to internal rotation and of the orientation of the methyl groups with respect to the principal axis system. In chapter 4 and 5, the results concerning two kinds of carboxylic acid bi-molecules, formed via two strong hydrogen bonds, are presented. This kind of adduct is interesting also because a double proton transfer can easily take place, connecting either two equivalent or two non-equivalent molecular conformations. Chapter 6 concerns a medium strong hydrogen bonded molecular complex of alcohol with ether. The dimer of ethanol-dimethylether was chosen as the model system for this purpose. Chapter 7 focuses on weak halogen…H hydrogen bond interaction. The nature of O-H…F and C-H…Cl interaction has been discussed through analyzing the rotational spectra of CH3CHClF/H2O. In chapter 8, two molecular complexes concerning the halogen bond interaction are presented.
Resumo:
In this Thesis we focus on non-standard signatures from CMB polarisation, which might hint at the existence of new phenomena beyond the standard models for Cosmology and Particle physics. With the Planck ESA mission, CMB temperature anisotropies have been observed at the cosmic variance limit, but polarisation remains to be further investigated. CMB polarisation data are important not only because they contribute to provide tighter constraints of cosmological parameters but also because they allow the investigation of physical processes that would be precluded if just the CMB temperature maps were considered. We take polarisation data into account to assess the statistical significance of the anomalies currently observed only in the CMB temperature map and to constrain the Cosmic Birefringence (CB) effect, which is expected in parity-violating extensions of the standard electromagnetism. In particular, we propose a new one-dimensional estimator for the lack of power anomaly capable of taking both temperature and polarisation into account jointly. With the aim of studying the anisotropic CB we develop and perform two different and complementary methods able to evaluate the power spectrum of the CB. Finally, by employing these estimators and methodologies on Planck data we provide new constraints beyond what already known in literature. The measure of CMB polarisation represents a technological challenge and to make accurate estimates, one has to keep an exquisite control of the systematic effects. In order to investigate the impact of spurious signal in forthcoming CMB polarisation experiments, we study the interplay between half-wave plates (HWP) non-idealities and the beams. Our analysis suggests that certain HWP configurations, depending on the complexity of Galactic foregrounds and the beam models, significantly impacts the B-mode reconstruction fidelity and could limit the capabilities of next-generation CMB experiments. We provide also a first study of the impact of non-ideal HWPs on CB.
Resumo:
The rotational spectroscopy of several sulfur bearing molecules and their 1:1 water complex, cysteamine, cysteamine monohydrate, 1-thioglycerol and 1-propanethiol were studied in the micro-wave and (or) millimeter-wave range. Precise laboratory spectra and conformational information were obtained. For cysteamine, the conformational space (at the B3LYP-GD3(BJ)/Def2-TZVP level) and the measurement and analysis of its rotational spectra in the 6 - 18 and 59.6 - 120 GHz are reported. The hyperfine structure of the rotational spectra was observed and analyzed for the first time. Based on the measured spectra, a search of the different conformers of cysteamine was performed toward the G+0.693-0.027 molecular cloud. We computed the upper limit of the ratio of ethanolamine to cysteamine, which is >0.8−5.3. For the cysteamine monohydrate, the conformational space was explored (at the B3LYP-GD3(BJ)/Def2-TZVP level). The rotational spectra of the cysteamine monohydrate complex have been assigned in the frequency range 6 – 18.5 GHz. The global minimum, Conf A1, was the only observed one. The 34S isotopologue of Conf A1 was observed in natural abundance, while 18O isotopologue was detected by introducing the H218O. In this conformer, the water molecule plays both proton donor and acceptor roles, forming a OHw···N interaction, a SH···Ow interaction and a CH···Ow interaction. The conformational space of 1-thioglycerol has been characterized by quantum mechanical calculation and its rotational spectrum has been recorded and analyzed in the frequency range 59.6 - 78.4 GHz. The global minimum of 1-thioglycerol is gTg’Gg’ and were detected together with gTg’Tg and gGgG’g, while the two detected conformers are g’G’gGg’ and tGgGg. The high-resolution rotational spectrum of 1-propanethiol in the frequency range 59.6 – 78.4 GHz was measured. Two conformers, Gg and Tg, were observed and their spectra were analyzed. Considering the overall conformational space calculated at the B3LYP-GD3(BJ)/Def2-TZVP level they are among the lowest energy conformers.