14 resultados para microbial communities
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Studies on soil organic carbon (SOC) sequestration in perennial energy crops are available for North-Central Europe, while there is insufficient information for Southern Europe. This research was conducted in the Po Valley, a Mediterranean-temperate zone characterised by low SOC levels, due to intensive management. The aim was to assess the factors influencing SOC sequestration and its distribution through depth and within soil fractions, after a 9-year old conversion from two annual systems to Miscanthus (Miscanthus × giganteus) and giant reed (Arundo donax). The 13C natural abundance was used to evaluate the amount of SOC in annual and perennial species, and determine the percentage of carbon derived from perennial crops. SOC was significantly higher under perennial species, especially in the topsoil (0-0.15 m). After 9 years, the amount of C derived from Miscanthus was 18.7 Mg ha-1, mostly stored at 0-0.15 m, whereas the amount of C derived from giant reed was 34.7 Mg ha-1, evenly distributed through layers. Physical soil fractionation was combined with 13C abundance analysis. C derived from perennial crops was mainly found in macroaggregates. Under giant reed, more newly derived-carbon was stored in microaggregates and mineral fraction than under Miscanthus. A molecular approach based on denaturing gradient gel electrophoresis (DGGE) allowed to evaluate changes on microbial community, after the introduction of perennial crops. Functional aspects were investigated by determining relevant soil enzymes (β-glucosidase, urease, alkaline phosphatase). Perennial crops positively stimulated these enzymes, especially in the topsoil. DGGE profiles revealed that community richness was higher in perennial crops; Shannon index of diversity was influenced only by depth. In conclusion, Miscanthus and giant reed represent a sustainable choice for the recovery of soils exhausted by intensive management, also in Mediterranean conditions and this is relevant mainly because this geographical area is notoriously characterised by a rapid turnover of SOC.
Resumo:
Free-living or host-associated marine microbiomes play a determinant role in supporting the functioning and biodiversity of marine ecosystems, providing essential ecological services, and promoting the health of the entire biosphere. Currently, the fast and restless increase of World’s human population strongly impacts life on Earth in the forms of ocean pollution, coastal zone destruction, overexploitation of marine resources, and climate change. Thanks to their phylogenetic, metabolic, and functional diversity, marine microbiomes represent the Earth’s biggest reservoir of solutions against the major threats that are now impacting marine ecosystems, possibly providing valuable insights for biotechnological applications to preserve the health of the ocean ecosystems. Microbial-based mitigation strategies heavily rely on the available knowledge on the specific role and composition of holobionts associated microbial communities, thus highlighting the importance of pioneer studies on microbial-mediated adaptive mechanisms in the marine habitats. In this context, we propose different models representing ecologically important, widely distributed, and habitat-forming organisms, to further investigate the ability of marine holobionts to dynamically adapt to natural environmental variations, as well as to anthropogenic stress factors. In this PhD thesis, we were able to supply the characterization of the microbial community associated with the model anthozoan cnidaria Corynactis viridis throughout a seasonal gradient, to provide critical insights into microbiome-host interactions in a biomonitoring perspective. We also dissected in details the microbial-derived mitigation strategies implemented by the benthonic anthozoan Anemonia viridis and the gastropod Patella caerulea as models of adaptation to anthropogenic stressors, in the context of bioremediation of human-impacted habitats and for the monitoring and preservation of coastal marine ecosystems, respectively. Finally, we provided a functional model of adaptation to future ocean acidification conditions by characterizing the microbial community associated with the temperate coral Balanophyllia europaea naturally living at low pH conditions, to implement microbial based actions to mitigate climate change.
Resumo:
The investigation of phylogenetic diversity and functionality of complex microbial communities in relation to changes in the environmental conditions represents a major challenge of microbial ecology research. Nowadays, particular attention is paid to microbial communities occurring at environmental sites contaminated by recalcitrant and toxic organic compounds. Extended research has evidenced that such communities evolve some metabolic abilities leading to the partial degradation or complete mineralization of the contaminants. Determination of such biodegradation potential can be the starting point for the development of cost effective biotechnological processes for the bioremediation of contaminated matrices. This work showed how metagenomics-based microbial ecology investigations supported the choice or the development of three different bioremediation strategies. First, PCR-DGGE and PCR-cloning approaches served the molecular characterization of microbial communities enriched through sequential development stages of an aerobic cometabolic process for the treatment of groundwater contaminated by chlorinated aliphatic hydrocarbons inside an immobilized-biomass packed bed bioreactor (PBR). In this case the analyses revealed homogeneous growth and structure of immobilized communities throughout the PBR and the occurrence of dominant microbial phylotypes of the genera Rhodococcus, Comamonas and Acidovorax, which probably drive the biodegradation process. The same molecular approaches were employed to characterize sludge microbial communities selected and enriched during the treatment of municipal wastewater coupled with the production of polyhydroxyalkanoates (PHA). Known PHA-accumulating microorganisms identified were affiliated with the genera Zooglea, Acidovorax and Hydrogenophaga. Finally, the molecular investigation concerned communities of polycyclic aromatic hydrocarbon (PAH) contaminated soil subjected to rhizoremediation with willow roots or fertilization-based treatments. The metabolic ability to biodegrade naphthalene, as a representative model for PAH, was assessed by means of stable isotope probing in combination with high-throughput sequencing analysis. The phylogenetic diversity of microbial populations able to derive carbon from naphthalene was evaluated as a function of the type of treatment.
Resumo:
Caves are dark and oligotrophic habitats where chemotrophic microbial communities interact with the inorganic mineral rocks and cooperate organizing themselves in complex biological formations, which are visible in caves as biofilms, biodeposits or biospeleothems. In these environments, microorganisms contribute to the turnover of the matter and activate peculiar enzymatic reactions leading to the modification of the mineral rocks and to the production of metabolites with possible industrial and pharmaceutical interest. In this PhD thesis, various molecular and geomicrobiological approaches were used to investigate the microbial diversity and potential activities in different cave systems, i.e. the orthoquartzite cave Imawarì Yeuta, the sufidic cave Fetida and the ice cave Cenote Abyss. This is aimed at gathering indications on the possible interactions that support microbial growth and its impact in cave environments. As a result, microbial taxa and functions associated to light-independent chemolithotroph and heterotrophic activities were identified in the three caves, indicating the involvement of microorganisms in i) silica mobilization and amorphization processes and the formation of a novel type of silica-based stromatolite in Imawarì Yeuta Cave, ii) the formation of three types of biofilm/biodeposit involved in sulphur cycle and in the speleogenesis of Fetida Cave, iii) the development of biofilms and their maintenance under psychrophilic conditions in samples collected from ice in Cenote Abyss. Additionally, the metabolic potentials of around one hundred isolates derived from these cave systems were evaluated in terms on anti-microbial activity. The results pointed out that unexplored and oligotrophic caves are promising environments for novel bioactive molecules discovery.
Resumo:
Hypoxia is one of the most important and faster spreading threats to marine life and its occurrence has significantly increased in the last century. The effects of hypoxia on marine organisms and communities has mostly been studied in light of the intensity of the disturbance but not a lot of attention has been given to its interaction with other stressors and the timing of its appearance. In this thesis I started to explore these topics through laboratory and manipulative field experiments. I studied the interactive effects of thermal stress and hypoxia on a European native bivalve species (Cerastoderma edule; Linnaeus, 1758 ) and a non native one (Ruditapes philippinarum; Adams & Reeve, 1850) through a laboratory experiment performed in the Netherlands. The non native species displayed a greater tolerance to oxygen depletion than the native one. The first field experiment was performed in an Italian brackish coastal lagoon (Pialassa Baiona) and tested the effects of different timing regimes of hypoxia on the benthic community. It emerged that the main factor affecting the community is the duration of the hypoxia. The ability of the communities to recover after repeated hypoxic periods was explored in the second manipulative field experiment. We imposed three different timing regimes of hypoxia on sediment patches in Pialassa Baiona and we monitored the changes of both the benthic and the microbial communities after the disturbances. The preliminary analyses of the data from this last work suggest that the experimental manipulations caused limited detrimental effects on the communities. Overall this thesis work suggests that the duration of hypoxic events, their repetitive nature and the associated thermal stress are key factors in determining their effects on the communities and that management measures should point towards a reduction of the duration of the single hypoxic periods more than their frequency.
Resumo:
Polychlorinated biphenyls (PCBs) are chemicals largely employed in the industry, banned at the end of the last century yet still persistent in the environment. Bioremediation, namely exploiting bacteria to reduce PCBs’ toxicity, is receiving attention as a promising approach to remediate polluted site in situ. Natural bioremediation is constrained by several factors as the low amount of the required growth substrates (e.g. electron donors, oxygen) and the scarcity of bacteria able to metabolize PCBs. In this regard, use of biodegradable polymers or applied potentials have been demonstrated effective in priming bioremediation of freshwater environments (e.g. river sediments) polluted by chlorinated solvents or PCBs. Yet, little is known regarding the application in marine sediments, where the abundance of anaerobic competitors (i.e. sulfate reducing bacteria) and the different sediment’s features might affect the bioremediation. In this study, polyhydroxyalkanoates (PHAs) and Microbial Electrochemical Technologies (METs) were applied for the first time to prime bioremediation of PCBs polluted marine sediments. The influence of PHAs was studied on the main anaerobic metabolisms and on the microbial community of the heavily polluted sediments coming from the Pialassa della Baiona, a micro-tidal coastal lagoon in Ravenna, and from Mar Piccolo, the marine basin aside Taranto. The impact of METs was deepened by monitoring the physical-chemical parameters and the main anaerobic metabolisms of the sediments coming from Ravenna. The effectiveness of biostimulating with PHAs depended on the features of the treated site, possibly due to the availability of the amendments and to the competition of the indigenous microbial communities. The bioelectrochemical stimulation inhibited the bioremediation process. In both cases, the presence of an inoculated bacterial community was required to perform bioremediation. The collected results led to a comprehensive analysis of the available literature, questioning what could be the further approaches for an effective in situ bioremediation.
Resumo:
This PhD research is part of a project addressed to improve the quality of Grana Trentino production. The objectives were to evaluated if milk storage and collection procedures may affect cheese-making technology and quality. Actually the milk is collected and delivered to the cheese factory just after milking in 50 L cans without refrigeration or in tanks cooled at 18 °C. This procedure is expensive (two deliveries each day) and the milk quality is difficult to preserve as temperatures are not controlled. The milk refrigeration at the farm could allow a single delivery to the dairy. Therefore it could be a good strategy to preserve raw milk quality and reduce cheese spoilage. This operation may, however, have the drawbacks of favouring the growth of psychrotrophic bacteria and changing the aptitude of milk to coagulation. With the aim of studying the effect on milk and cheese of traditional and new refrigerated technologies of milk storage, two different collection and creaming technologies were compared. The trials were replicated in three cheese factories manufacturing Grana Trentino. Every cheese-making day, about 1000 milk liters were collected from always the same two farms in the different collection procedures (single or double). Milk was processed to produce 2 wheels of Grana trentino every day. During the refrigerated trials, milk was collected and stored at the farm in a mixed tank at 12 or 8 °C and then was carried to the dairy in truck once a day. 112 cheese making day were followed: 56 for traditional technology and 56 for the refrigerated one. Each one of these two thechnologies lead to different ways of creaming: long time in the traditional one and shorter in the new one. For every cheese making day we recorded time, temperatures and pH during the milk processing to cheese. Whole milk before ceraming, cream and skim milk after creaming, vat milk and whey were sampled during every cheese-making day for analysis. After 18 months ripening we opened 46 cheese wheels for further chemical and microbiological analyses. The trials were performed with the aim of: 1 estimate the effect of storage temperatures on microbial communities, physico-chemical or/and rheological differences of milk and skim milk after creaming. 2 detect by culture dependent (plate counts) and indipendent (DGGE) methodolgies the microbial species present in whole, skimmed milk, cream and cheese sampled under the rind and in the core; 3 estimate the physico-chemical characteristics, the proteolytic activity, the content of free aminoacids and volatile compounds in 18 months ripened Grana Trentino cheeses from different storing and creaming of milk technologies. The results presented are remarkable since this is the first in-deep study presenting microbiological and chemical analysis of Grana Trentino that even if belonging to Grana Padano Consortium, it is clearly different in the milk and in the manufacturing technology.
Resumo:
The vaginal microbiota of healthy women consists of a wide variety of anaerobic and aerobic bacteria, dominated by the genus Lactobacillus. The activity of lactobacilli is essential to protect women from genital infections and to maintain the natural healthy balance of the vaginal ecosystem. This role is particularly important during pregnancy because vaginal infection is one of the most important mechanisms for preterm birth. The most common vaginal disorder is bacterial vaginosis (BV). BV is a polymicrobial disorder, characterized by a depletion of lactobacilli and an increase in the concentration of other bacteria, including Gardnerella vaginalis, anaerobic Gram-negative rods, anaerobic Gram-positive cocci, Mycoplasma hominis, and Mobiluncus spp. An integrated molecular approach based on real-time PCR and PCR-DGGE was used to investigate the effects of two different therapeutic approaches on the vaginal microbiota composition. (i) The impact of a dietary supplementation with the probiotic VSL#3, a mixture of Lactobacillus, Bifidobacterium and Streptococcus strains, on the vaginal microbial ecology and immunological profiles of healthy women during late pregnancy was investigated. The intake was associated to a slight modulation of the vaginal microbiota and cytokine secretion, with potential implications in preventing preterm birth. (ii) The efficacy of different doses of the antibiotic rifaximin (100 mg/day for 5 days, 25 mg/day for 5 days, 100 mg/day for 2 days) on the vaginal microbiota of patients with BV enrolled in a multicentre, double-blind, randomised, placebo-controlled study was also evaluated. The molecular analyses demonstrated the ability of rifaximin 25 mg/day for 5 days to induce an increase of lactobacilli and a decrease of the BV-associated bacteria after antibiotic treatment, and a reduction of the complexity of the vaginal microbial communities. Thus, confirming clinical results, it represents the most effective treatment to be used in future pivotal studies for the treatment of BV.
Resumo:
Nanotechnology promises huge benefits for society and capital invested in this new technology is steadily increasing, therefore there is a growing number of nanotechnology products on the market and inevitably engineered nanomaterials will be released in the atmosphere with potential risks to humans and environment. This study set out to extend the comprehension of the impact of metal (Ag, Co, Ni) and metal oxide (CeO2, Fe3O4, SnO2, TiO2) nanoparticles (NPs) on one of the most important environmental compartments potentially contaminated by NPs, the soil system, through the use of chemical and biological tools. For this purpose experiments were carried out to simulate realistic environmental conditions of wet and dry deposition of NPs, considering ecologically relevant endpoints. In detail, this thesis involved the study of three model systems and the evaluation of related issues: (i) NPs and bare soil, to assess the influence of NPs on the functions of soil microbial communities; (ii) NPs and plants, to evaluate the chronic toxicity and accumulation of NPs in edible tissues; (iii) NPs and invertebrates, to verify the effects of NPs on earthworms and the damaging of their functionality. The study highlighted that NP toxicity is generally influenced by NP core elements and the impact of NPs on organisms is specie-specific; moreover experiments conducted in media closer to real conditions showed a decrease in toxicity with respect to in vitro test or hydroponic tests. However, only a multidisciplinary approach, involving physical, chemical and biological skills, together with the use of advanced techniques, such as X-ray absorption fine structure spectroscopy, could pave the way to draw the right conclusions and accomplish a deeper comprehension of the effects of NPs on soil and soil inhabitants.
Resumo:
Naphthenic acids (NAs) are an important group of organic pollutants mainly found in hydrocarbon deposits. Although these compounds are toxic, recalcitrant, and persistent in the environment, we are just learning the diversity of microbial communities involved in NAs- degradation and the mechanisms by which NAs are biodegraded. Studies have shown that naphthenic acids are susceptible to biodegradation, which decreases their concentration and reduces toxicity. Nevertheless, little is still known about their biodegradability. The present PhD Thesis’s work is aimed to study the biodegradation of simple model NAs using bacteria strains belonging to the Rhodococcus genus. In particular, Rh. sp. BCP1 and Rh. opacus R7 were able to utilize NAs such as cyclohexane carboxylic acid and cyclopentane carboxylic acid as the sole carbon and energy sources, even at concentrations up to 1000 mg/L. The presence of either substituents or longer carboxylic acid chains attached to the cyclohexane ring negatively affected the growth by pure bacterial cultures. Moreover, BCP1 and R7 cells incubated in the presence of CHCA or CPCA show a general increase of saturated and methyl-substituted fatty acids in their membrane, while the cis-mono-unsaturated ones decrease, as compared to glucose-grown cells. The observed lipid molecules modification during the growth in the presence of NAs is suggested as a possible mechanism to decrease the fluidity of the cell membrane to counteract NAs toxicity. In order to further evaluate this toxic effect on cell features, the morphological changes of BCP1 and R7 cells were also assessed through Transmission Electron Microscopy (TEM), revealing interesting ultrastructural changes. The induction of putative genes, and the construction of a random transposon mutagenesis library were also carried out to reveal the mechanisms by which these Rhodococcus strains can degrade toxic compounds such as NAs.
Resumo:
Besides their own adaptation strategies, plants might exploit microbial symbionts for overcoming both biotic and abiotic stresses and increase fitness. The current scenario of rapid climate change is demanding more sustainable agricultural management practices. The application of microbe-based products as a valid alternative to synthetic pesticides and fertilizers and their use to overcome stresses exacerbated by climate change, have been reviewed in the first part of this thesis. Berry fruits are widely cultivated and appreciated for their aromatic and nutraceutical properties. This thesis is focused on the role of plant and fruit microbiome on strawberry and raspberry growth, resistance, fruit quality and aroma. A taxonomical and functional description of the microbiome of different organs of three strawberry genotypes was performed both by traditional cultural dependent method and Next Generation Sequencing technique, highlighting a significant role of plant organs and genotype in determining the composition of microbial communities. Additionally, a selection of bacteria native of strawberry plants were isolated and screened for their plant growth promoting abilities and tested under the biotic stress of Xanthomonas fragariae infection and the abiotic stress of induced salinity. The monitoring of biometric parameters allowed the selection of a more restricted panel of bacterial strains, whose beneficial potential was tested in coordinated inoculations, or singularly. Raspberry plant was used for investigating the effect of cultivation method in determining fruit microbiome, and its consequent influence of berry quality and aroma. Interestingly, the cultivation method strongly influenced fruit nutraceutical traits, aroma and epiphytic bacterial biocoenosis. The involvement of the bacterial microbiota in fruit aroma determination was evaluated by performing GC–MS analysis of VOCs occurring in control, sterile and artificially reinoculated berries and by characterizing control and reinoculated berry microbiome. Differently treated berries showed significantly different aromatic profile, confirming the role of bacteria in fruit aroma development.
Resumo:
The rhizosphere, i.e. the soil surrounding the plant roots, and endosphere, i.e. the microbial communities within the plant organs harbors microbes known to influence root and plant physiological processes. An important question is to what extent plant species, genotypes and environmental conditions affect bacterial and fungal communities. The objectives of the first research study were to unravel and compare the rhizospheric microbiota of grape in two independent vineyards using 16S and ITS amplicon sequencing, evaluate location and varietal effects, and test the correlation between bioavailable copper levels and other soil parameters with microbiota composition and diversity. Our results showed that the microbial alpha diversity based on Shannon index differed significantly between vineyards while it did not differ between two grape cultivars. In the second study, we were focusing on different wheat species and genotypes such as Bread Wheat, Wild Emmer Wheat, Domesticated Emmer Wheat, Durum Wheat Landraces, Durum Wheat cultivars, T. monococcum and triticale in two fields located in Bologna and Foggia. The objectives of this research experiment were to elucidate and compare the rhizospheric and endophytic microbiota of 30 diverse wheat genotypes in two different fields using 16S amplicon sequencing. Our results showed that the microbial alpha diversity based on Shannon index differed significantly between fields of Bologna and Foggia, in which Bologna had a higher diversity in respect to Foggia for both rhizospheric and endophytic communities. Using Shannon index there was significant differences, for instance, between Durum Emmer Wheat and Wild Emmer Wheat in Bologna, and between Bread Wheat and Durum Wheat Landraces in Foggia. Our results contribute to understand the role of wheat species and genotype and the filed management on the root-microbe-soil interactions in the perspective of understanding their impact on crop systems sustainability.
Resumo:
Endodontic-related periapical bone defects are a common occurrence in the global populations. Considering the number of root canal treatments performed annually, new strategies and new biomaterials for the management of these bone defects will be important and highlight the need for continued research and development in endodontic field. The present PhD thesis have several objectives and is divided into two main sections: one focused on in vitro and laboratory research and the other on clinical in vivo investigations. The first part, focused on laboratory and in vitro research, investigated 2 main topics: • the microbial communities of apical periodontitis to evaluate the predominant bacterial using 16sr DNA-targeted Nanopore sequencing; • the physical-chemical properties of innovative premixed calcium-silicate based bioceramic sealers for endodontic therapy; The second part, focused on in vivo clinical studies, investigated 2 main topics: • the clinical application of premixed calcium-silicate-based sealers. Ethical committee approval was obtained in 2 separate in vivo studies. The first one is a prospective cohort study with a two-year follow-up where the test group was compared with a control group (considered the gold standard). The second is a pilot prospective cohort study with a 12-month follow-up which set the foundation for a subsequent randomized investigation. Thanks to these investigations, we validated a new technique that innovatively associates a warm obturation technique with calcium-silicate-based sealers. Historically, these sealers were only used with cold techniques. This investigation highlights the possibility for wider utilization and improvements in endodontic techniques. • The outcome of 2 different types of implants characterized by different surface treatments and placed with different techniques. The marginal bone level and periodontal parameters were evaluated with a follow-up of 4 and 10 years. This Ph.D thesis is based on a compilation of published papers I have done during my three-year PhD program.
Resumo:
Prokaryotic organisms are one of the most successful forms of life, they are present in all known ecosystems. The deluge diversity of bacteria reflects their ability to colonise every environment. Also, human beings host trillions of microorganisms in their body districts, including skin, mucosae, and gut. This symbiosis is active for all other terrestrial and marine animals, as well as plants. With the term holobiont we refer, with a single word, to the systems including both the host and its symbiotic microbial species. The coevolution of bacteria within their ecological niches reflects the adaptation of both host and guest species, and it is shaped by complex interactions that are pivotal for determining the host state. Nowadays, thanks to the current sequencing technologies, Next Generation Sequencing, we have unprecedented tools for investigating the bacterial life by studying the prokaryotic genome sequences. NGS revolution has been sustained by the advancements in computational performance, in terms of speed, storage capacity, algorithm development and hardware costs decreasing following the Moore’s Law. Bioinformaticians and computational biologists design and implement ad hoc tools able to analyse high-throughput data and extract valuable biological information. Metagenomics requires the integration of life and computational sciences and it is uncovering the deluge diversity of the bacterial world. The present thesis work focuses mainly on the analysis of prokaryotic genomes under different aspects. Being supervised by two groups at the University of Bologna, the Biocomputing group and the group of Microbial Ecology of Health, I investigated three different topics: i) antimicrobial resistance, particularly with respect to missense point mutations involved in the resistant phenotype, ii) bacterial mechanisms involved in xenobiotic degradation via the computational analysis of metagenomic samples, and iii) the variation of the human gut microbiota through ageing, in elderly and longevous individuals.