5 resultados para miRNA-based therapies
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Background: Chronic kidney disease (CKD) is one of the strongest risk factor for myocardial infarction (MI) and mortality. The aim of this study was to assess the association between renal dysfunction severity, short-term outcomes and the use of in-hospital evidence-based therapies among patients with non–ST-segment elevation myocardial infarction (NSTEMI). Methods: We examined data on 320 patients presenting with NSTEMI to Maggiore’s Emergency Department from 1st Jan 2010 to 31st December 2011. The study patients were classified into two groups according to their baseline glomerular filtration rate (GFR): renal dysfunction (RD) (GFR<60) and non-RD (GFR≥60 ml/min). Patients were then classified into four groups according to their CKD stage (GFR≥60, GFR 59-30, GFR 29-15, GFR <15). Results: Of the 320 patients, 155 (48,4%) had a GFR<60 ml/min at baseline. Compared with patients with a GFR≥60 ml/min, this group was, more likely to be female, to have hypertension, a previous myocardial infarction, stroke or TIA, had higher levels of uric acid and C-reactive protein. They were less likely to receive immediate (first 24 hours) evidence-based therapies. The GFR of RD patients treated appropriately increases on average by 5.5 ml/min/1.73 m2. The length of stay (mean, SD) increased with increasing CKD stage, respectively 5,3 (4,1), 7.0 (6.1), 7.8 (7.0), 9.2 (5.8) (global p <.0001). Females had on average a longer hospitalization than males, regardless of RD. In hospital mortality was higher in RD group (3,25%). Conclusions: The in-hospital mortality not was statically difference among the patients with a GFR value ≥60 ml/min, and patients with a GFR value <60 ml/min. The length of stay increased with increasing CKD stages. Despite patients with RD have more comorbidities then without RD less frequently receive guideline –recommended therapy. The GFR of RD patients treated appropriately improves during hospitalization, but not a level as we expected.
Resumo:
Alpha-particle emitters, notably used in 224Ra-DaRT, have emerged as effective in overcoming radiation resistance and providing targeted cancer therapy. These emitters cause DNA double-strand breaks, visualizable in human lymphocytes. The 224Ra DaRT technique, using a decay chain from seeds, extends alpha particle range, achieving complete tumor destruction while sparing healthy tissue. This thesis examines a biokinetic model, validated with patient data, and a feasibility study on skin squamous cell carcinomas are discussed. The study reports 75% tumor complete response rate and 48% patients experiencing acute grade 2 toxicity, resolving within a month. An observed abscopal effect (AE), where tumor regression occurs at non-irradiated sites, is examined, highlighting DaRT's potential in triggering anti-tumor immune responses. This effect, coupled with DaRT's high-linear energy transfer (LET), suggests its superiority over low-LET radiation in certain clinical scenarios. Improvements to DaRT, including the use of an external radio-opaque template for treatment planning, are explored. This advancement aids in determining source numbers for optimal tumor coverage, enhancing DaRT’s safety. The thesis outlines a typical DaRT procedure, from tumor measurements to source assessment and administration, emphasizing the importance of precise seed positioning. Furthermore, the thesis discusses DaRT's potential in treating prostate cancer, a prevalent global health issue, by offering an alternative to traditional salvage therapies. DaRT seeds, delivering alpha particle-based interstitial radiation, require precision in seed insertion due to their limited tissue range. In conclusion, the thesis advocates for DaRT's role in treating solid tumors, emphasizing its improved radiobiological potency and potential benefits over beta and gamma source-based therapies. Ongoing studies are assessing DaRT's feasibility in treating various solid tumors, including pancreatic, breast, prostate, and vulvar malignancies, suggesting a promising future in cancer treatment.
Resumo:
Regulatory T cells (Treg) actively regulate alloimmune responses and promote transplantation tolerance. Polyclonal anti-thymocyte globulin (ATG), a widely used induction therapy in clinical organ transplantation, depletes peripheral T cells. However, resistance to tolerance induction is seen with certain T cell depleting strategies and is attributed to alterations in the balance of naïve, memory and regulatory T cells. Here we report a novel reagent, murine ATG (mATG), depletes T cells but preferentially spares CD25+ natural Tregs which limit skewing of T cell repertoire toward T-effector-memory (Tem) phenotype among the recovering T cells. T-cell depletion with mATG combined with CTLA4Ig and Sirolimus synergize to prolong graft survival by tipping the Treg/Tem balance further in favor of Tregs by preserving Tregs, facilitating generation of new Tregs by a conversion mechanism and limiting Tem expansion in response to alloantigen and homeostatic proliferation. These results provide the rationale for translating such novel combination therapies to promote tolerance in primate and human organ transplantation.
Resumo:
Background: Clinical trials have demonstrated that selected secondary prevention medications for patients after acute myocardial infarction (AMI) reduce mortality. Yet, these medications are generally underprescribed in daily practice, and older people are often absent from drug trials. Objectives: To examine the relationship between adherence to evidence-based (EB) drugs and post-AMI mortality, focusing on the effects of single therapy and polytherapy in very old patients (≥80 years) compared with elderly and adults (<80 years). Methods: Patients hospitalised for AMI between 01/01/2008 and 30/06/2011 and resident in the Local Health Authority of Bologna were followed up until 31/12/2011. Medication adherence was calculated as the proportion of days covered for filled prescriptions of angiotensin-converting enzyme inhibitors (ACEIs)/angiotensin receptor blockers (ARBs), β-blockers, antiplatelet drugs, and statins. We adopted a risk set sampling method, and the adjusted relationship between medication adherence (PDC≥75%) and mortality was investigated using conditional multiple logistic regression. Results: The study population comprised 4861 patients. During a median follow-up of 2.8 years, 1116 deaths (23.0%) were observed. Adherence to the 4 EB drugs was 7.1%, while nonadherence to any of the drugs was 19.7%. For both patients aged ≥80 years and those aged <80 years, rate ratios of death linearly decreased as the number of EB drugs taken increased. There was a significant inverse relationship between adherence to each of 4 medications and mortality, although its magnitude was higher for ACEIs/ARBs (adj. rate ratio=0.60, 95%CI=0.52–0.69) and statins (0.60, 0.50–0.72), and lower for β-blockers (0.75, 0.61–0.92) and antiplatelet drugs (0.73, 0.63–0.84). Conclusions: The beneficial effect of EB polytherapy on long-term mortality following AMI is evident also in nontrial older populations. Given that adherence to combination therapies is largely suboptimal, the implementation of strategies and initiatives to increase the use of post-AMI secondary preventive medications in old patients is crucial.
Resumo:
Tumours are characterized by a metabolic rewiring that helps transformed cells to survive in harsh conditions. The endogenous inhibitor of the ATP-synthase IF1 is overexpressed in several tumours and it has been proposed to drive metabolic adaptation. In ischemic normal-cells, IF1 acts limiting the ATP consumption by the reverse activity of the ATP-synthase, activated by ΔΨm collapse. Conversely, IF1 role in cancer cells is still unclear. It has been proposed that IF1 favours cancer survival by preventing energy dissipation in low oxygen availability, a frequent condition in solid tumours. Our previous data proved that in cancer cells hypoxia does not abolish ΔΨm, avoiding the ATP-synthase reversal and IF1 activation. In this study, we investigated the bioenergetics of cancer cells in conditions mimicking anoxia to evaluate the possible role of IF1. Data obtained indicate that also in cancer cells the ΔΨm collapse induces the ATP-synthase reversal and its inhibition by IF1. Moreover, we demonstrated that upon uncoupling conditions, IF1 favours cancer cells growth preserving ATP levels and energy charge. We also showed that in these conditions IF1 favours the mitochondrial mass renewal, a mechanism we proposed driving apoptosis-resistance. Cancer adaptability is also associated with the onset of therapy resistance, the major challenge for melanoma treatment. Recent studies demonstrated that miRNAs dysregulation drive melanoma progression and drug-resistance by regulating tumour-suppressor and oncogenes. In this context, we attempted to identify and characterize miRNAs driving resistance to vemurafenib in patient-derived metastatic melanoma cells BRAFV600E-mutated. Our results highlighted that several oncogenic pathways are altered in resistant cells, indicating the complexity of both drug-resistance phenomena and miRNAs action. Profiling analysis identified a group of dysregulated miRNAs conserved in vemurafenib-resistance cells from distinct patients, suggesting that they ubiquitously drive drug-resistance. Functional studies performed with a first miRNA confirmed its pivotal role in resistance towards vemurafenib.