5 resultados para mesoscale
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Oceanic Near-inertial internal waves generation, propagation and interaction with mesoscale dynamics
Resumo:
Oceans play a key role in the climate system, being the largest heat sinks on Earth. Part of the energy balance of ocean circulation is driven by the Near-inertial internal waves (NIWs). Strong NIWs are observed during a multi-platform, multi-disciplinary and multi-scale campaign led by the NATO-STO CMRE in autumn 2017 in the Ligurian Sea (northwestern Mediterranean Sea). The objectives of this work are as follows: characterise the studied area at different scales; study the NIWs generation and their propagation; estimate the NIWs properties; study the interaction between NIWs and mesoscale structures. This work provides, to the author’s knowledge, the first characterization of NIWs in the Mediterranean Sea. The near-surface NIWs observed at the fixed moorings are locally generated by wind bursts while the deeper waves originate in other regions and arrive at the moorings several days later. Most of the observed NIWs energy propagates downward with a mean vertical group velocity of (2.2±0.3) ⋅10-4 m s-1. On average, the NIWs have an amplitude of 0.13 m s-1 and mean horizontal and vertical wavelengths of 43±25 km and 125±35 m, while shorter wavelengths are observed at the near-coastal mooring, 36±2 km and 33±2 m, respectively. Most of the observed NIWs are blue shifted and reach a value 9% higher than the local inertial frequency. Only two observed NIWs are characterised by a redshift (up to 3% lower than the local inertial frequency). In support of the in situ observations, a high resolution numerical model is implemented using NEMO (Madec et al., 2019). Results show that anticyclones (cyclones) shift the frequency of NIWs to lower (higher) frequencies with respect to the local inertial frequency. Anticyclones facilitate the downward propagation of NIW energy, while cyclones dampen it. Absence of NIWs energy within an anticyclone is also investigated.
Resumo:
The vertical profile of aerosol in the planetary boundary layer of the Milan urban area is studied in terms of its development and chemical composition in a high-resolution modelling framework. The period of study spans a week in summer of 2007 (12-18 July), when continuous LIDAR measurements and a limited set of balloon profiles were collected in the frame of the ASI/QUITSAT project. LIDAR observations show a diurnal development of an aerosol plume that lifts early morning surface emissions to the top of the boundary layer, reaching maximum concentration around midday. Mountain breeze from Alps clean the bottom of the aerosol layer, typically leaving a residual layer at around 1500-2000 m which may survive for several days. During the last two days under analysis, a dust layer transported from Sahara reaches the upper layers of Milan area and affects the aerosol vertical distribution in the boundary layer. Simulation from the MM5/CHIMERE modelling system, carried out at 1 km horizontal resolution, qualitatively reproduced the general features of the Milan aerosol layer observed with LIDAR, including the rise and fall of the aersol plume, the residual layer in altitude and the Saharan dust event. The simulation highlighted the importance of nitrates and secondary organics in its composition. Several sensitivity tests showed that main driving factors leading to the dominance of nitrates in the plume are temperature and gas absorption process. A modelling study turn to the analysis of the vertical aerosol profiles distribution and knowledge of the characterization of the PM at a site near the city of Milan is performed using a model system composed by a meteorological model MM5 (V3-6), the mesoscale model from PSU/NCAR and a Chemical Transport Model (CTM) CHIMERE to simulate the vertical aerosol profile. LiDAR continuous observations and balloon profiles collected during two intensive campaigns in summer 2007 and in winter 2008 in the frame of the ASI/QUITSAT project have been used to perform comparisons in order to evaluate the ability of the aerosol chemistry transport model CHIMERE to simulate the aerosols dynamics and compositions in this area. The comparisons of model aerosols with measurements are carried out over a full time period between 12 July 2007 and 18 July 2007. The comparisons demonstrate the ability of the model to reproduce correctly the aerosol vertical distributions and their temporal variability. As detected by the LiDAR, the model during the period considered, predicts a diurnal development of a plume during the morning and a clearing during the afternoon, typically the plume reaches the top of the boundary layer around mid day, in this time CHIMERE produces highest concentrations in the upper levels as detected by LiDAR. The model, moreover can reproduce LiDAR observes enhancement aerosols concentrations above the boundary layer, attributing the phenomena to dust out intrusion. Another important information from the model analysis regard the composition , it predicts that a large part of the plume is composed by nitrate, in particular during 13 and 16 July 2007 , pointing to the model tendency to overestimates the nitrous component in the particular matter vertical structure . Sensitivity study carried out in this work show that there are a combination of different factor which determine the major nitrous composition of the “plume” observed and in particular humidity temperature and the absorption phenomena are the mainly candidate to explain the principal difference in composition simulated in the period object of this study , in particular , the CHIMERE model seems to be mostly sensitive to the absorption process.
Resumo:
In the last few years the resolution of numerical weather prediction (nwp) became higher and higher with the progresses of technology and knowledge. As a consequence, a great number of initial data became fundamental for a correct initialization of the models. The potential of radar observations has long been recognized for improving the initial conditions of high-resolution nwp models, while operational application becomes more frequent. The fact that many nwp centres have recently taken into operations convection-permitting forecast models, many of which assimilate radar data, emphasizes the need for an approach to providing quality information which is needed in order to avoid that radar errors degrade the model's initial conditions and, therefore, its forecasts. Environmental risks can can be related with various causes: meteorological, seismical, hydrological/hydraulic. Flash floods have horizontal dimension of 1-20 Km and can be inserted in mesoscale gamma subscale, this scale can be modeled only with nwp model with the highest resolution as the COSMO-2 model. One of the problems of modeling extreme convective events is related with the atmospheric initial conditions, in fact the scale dimension for the assimilation of atmospheric condition in an high resolution model is about 10 Km, a value too high for a correct representation of convection initial conditions. Assimilation of radar data with his resolution of about of Km every 5 or 10 minutes can be a solution for this problem. In this contribution a pragmatic and empirical approach to deriving a radar data quality description is proposed to be used in radar data assimilation and more specifically for the latent heat nudging (lhn) scheme. Later the the nvective capabilities of the cosmo-2 model are investigated through some case studies. Finally, this work shows some preliminary experiments of coupling of a high resolution meteorological model with an Hydrological one.
Resumo:
The study of tides and their interactions with the complex dynamics of the global ocean represents a crucial challenge in ocean modelling. This thesis aims to deepen this study from a dynamical point of view, analysing what are the tidal effects on the general circulation of the ocean. We perform different experiments of a mesoscale-permitting global ocean model forced by both atmospheric fields and astronomical tidal potential, and we implement two parametrizations to include in the model tidal phenomena that are currently unresolved, with particular emphasis to the topographic wave drag for locally dissipating internal waves. An additional experiment using a mesoscale-resolving configuration is used to compare the simulated tides at different resolutions with observed data. We find that the accuracy of modelled tides strongly depends on the region and harmonic component of interest, even though the increased resolution allows to improve the modelled topography and resolve more intense internal waves. We then focus on the impact of tides in the Atlantic Ocean and find that tides weaken the overturning circulation during the analysed period from 1981 to 2007, even though the interannual differences strongly change in both amplitude and phase. The zonally integrated momentum balance shows that tide changes the water stratification at the zonal boundaries, modifying the pressure and therefore the geostrophic balance over the entire basin. Finally, we describe the overturning circulation in the Mediterranean Sea computing the meridional and zonal streamfunctions both in the Eulerian and residual frameworks. The circulation is characterised by different cells, and their forcing processes are described with particular emphasis to the role of mesoscale and a transient climatic event. We complete the description of the overturning circulation giving evidence for the first time to the connection between meridional and zonal cells.
Resumo:
This thesis has the aim to give an overview about the tectonic history of the Epiligurian units, which crop out in the axial portion of the Northern Apennines fold-and-thrust belt, from a structural and thermal point of view, through a multiscalar and multitecnique approach. I focused on a key example of Epiligurian wedge-top basin, (Marzabotto Basin) proceeding from macro-to-microscale approach. The study started from a remote sensing analysis of the lineaments and morphostructures which affected the study area to obtain the regional faulting pattern and an overview about the main tectonic structures, used as basis for the structural investigation at the mesoscale. On the basis of this, it was possible to reconstruct the succession of tectonic events that affected the Marzabotto Basin, consisting in: i) two sets of thrusts indicating a NE-SW and NW-SE shortening of the sedimentary succession; ii) NE-SW-left lateral transtensional faults related to a strike-slip tectonic phase; iii) three main sets of extensional structures which cut and displace the previous thrusts. Normal faults are related to the post-orogenic evolution and have been dated with U-Th method, getting an age of Middle-Late Pleistocene. From a thermal point of view, apatite fission-tracks and (U-Th)/He analyses of detrital minerals and thermal modelling on the middle-upper Eocene siliciclastic deposits allowed me to better constrain the local exhumation history and correlate it with the large-scale tectonic evolution of the Northern Apennines. In particular, the Marzabotto Basin experienced a complex burial-exhumation history, consisting in two cooling cooling phases related to the growth of the Northern Apennines belt (Oligo-Miocene in age) and a later cooling which tracks the accretion in the orogenic wedge concomitant with rollback-driven extension (late Miocene-Pliocene in age). In conclusion it is possible to affirm that the study shed new light on poorly constrained elements of fold-and-thrust belt.