2 resultados para memberships categorization analysis

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmospheric aerosol particles directly impact air quality and participate in controlling the climate system. Organic Aerosol (OA) in general accounts for a large fraction (10–90%) of the global submicron (PM1) particulate mass. Chemometric methods for source identification are used in many disciplines, but methods relying on the analysis of NMR datasets are rarely used in atmospheric sciences. This thesis provides an original application of NMR-based chemometric methods to atmospheric OA source apportionment. The method was tested on chemical composition databases obtained from samples collected at different environments in Europe, hence exploring the impact of a great diversity of natural and anthropogenic sources. We focused on sources of water-soluble OA (WSOA), for which NMR analysis provides substantial advantages compared to alternative methods. Different factor analysis techniques are applied independently to NMR datasets from nine field campaigns of the project EUCAARI and allowed the identification of recurrent source contributions to WSOA in European background troposphere: 1) Marine SOA; 2) Aliphatic amines from ground sources (agricultural activities, etc.); 3) Biomass burning POA; 4) Biogenic SOA from terpene oxidation; 5) “Aged” SOAs, including humic-like substances (HULIS); 6) Other factors possibly including contributions from Primary Biological Aerosol Particles, and products of cooking activities. Biomass burning POA accounted for more than 50% of WSOC in winter months. Aged SOA associated with HULIS was predominant (> 75%) during the spring-summer, suggesting that secondary sources and transboundary transport become more important in spring and summer. Complex aerosol measurements carried out, involving several foreign research groups, provided the opportunity to compare source apportionment results obtained by NMR analysis with those provided by more widespread Aerodyne aerosol mass spectrometers (AMS) techniques that now provided categorization schemes of OA which are becoming a standard for atmospheric chemists. Results emerging from this thesis partly confirm AMS classification and partly challenge it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Europe almost 80% of the continent's population lives in cities. It is estimated that by 2030 most regions in Europe which contain major cities will have even more inhabitants on 35–60% more than now. This process generates a consequent elevate human pressure on the natural environment, especially around large urban agglomerations. Cities could be seen as an ecosystem, represented by the dominance of humans that re-distribute organisms and fluxes and represent the result of co-evolving human and natural systems, emerging from the interactions between humans, natural and infrastructures. Roads have a relevant role in building links between urban components, creating the basis on which it is founded the urban ecosystem itself. This thesis is focused on the research for a comprehensive model, framed in European urban health & wellbeing programme, aimed to evaluate the determinants of health in urban populations. Through bicycles, GPS and sensor kits, specially developed and produced by University of Bologna for this purpose, it has been possible to conduct on Bologna different direct observations that oriented the novelty of the research: the categorization of university students cyclists, connection among environmental data awareness and level of cycling, and an early identification of urban attributes able to impact on road air quality and level of cycling. The categorization of university students’ cyclist has been defined through GPS analysis and focused survey, that both permit to identify behavioural and technical variables and attitudes towards urban cycling. The statistic relationship between level of cycling, seen as number of bicycles passages per lane and pollutants level, has been investigated through an inverse regression model, defined and tested through SPSS software on the basis of the data harvest. The research project that represents a sort of dynamic mobility laboratory on two wheels, that permits to harvest and study detected parameters.