3 resultados para member load effect

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The introduction of dwarfed rootstocks in apple crop has led to a new concept of intensive planting systems with the aim of producing early high yield and with returns of the initial high investment. Although yield is an important aspect to the grower, the consumer has become demanding regards fruit quality and is generally attracted by appearance. To fulfil the consumer’s expectations the grower may need to choose a proper training system along with an ideal pruning technique, which ensure a good light distribution in different parts of the canopy and a marketable fruit quality in terms of size and skin colour. Although these aspects are important, these fruits might not reach the proper ripening stage within the canopy because they are often heterogeneous. To describe the variability present in a tree, a software (PlantToon®), was used to recreate the tree architecture in 3D in the two training systems. The ripening stage of each of the fruits was determined using a non-destructive device (DA-Meter), thus allowing to estimate the fruit ripening variability. This study deals with some of the main parameters that can influence fruit quality and ripening stage within the canopy and orchard management techniques that can ameliorate a ripening fruit homogeneity. Significant differences in fruit quality were found within the canopies due to their position, flowering time and bud wood age. Bi-axis appeared to be suitable for high density planting, even though the fruit quality traits resulted often similar to those obtained with a Slender Spindle, suggesting similar fruit light availability within the canopies. Crop load confirmed to be an important factor that influenced fruit quality as much as the interesting innovative pruning method “Click”, in intensive planting systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PEMF are a medical and non-invasive therapy successfully used for clinical treatments of bone disease, due to the piezoelectric effect that improve bone mass and density, by the stimulation of osteoblastogenesis, with modulation of calcium storages and mineral metabolism. PEMF enhance tissue oxygenation, microcirculation and angiogenesis, in rats and cells erythrocytes, in cells-free assay. Such responses could be caused by a modulation of nitric oxide signal and interaction between PEMF and Ca2+/NO/cGMP/PKG signal. PEMF improve blood flow velocity of smallest vein without changing their diameter. PEMF therapy helpful in patients with diabetes, due to increased microcirculation trough enhance capillary blood velocity and diameter. We investigated the influence of stimulation on muscular activity, tissue oxygenation and pulmonary VO2, during exercise, on different intensity, as heavy or moderate, different subjects, as a athlete or sedentary, and different sport activity, as a cycling or weightlifting. In athletes, we observed a tendency for a greater change and a faster kinetic of HHb concentration. PEMF increased the velocity and the quantity of muscle O2 available, leading to accelerate the HHb kinetics. Stimulation induced a bulk muscle O2 availability and a greater muscle O2 extraction, leading to a reduced time delay of the HHb slow component. Stimulation increased the amplitude of muscle activity under different conditions, likely caused by the effect of PEMF on contraction mechanism of muscular fibers, by the change of membrane permeability and Ca2+ channel conduction. In athletes, we observed an increase of overall activity during warm-up. In sedentary people, stimulation increased the magnitude of muscle activity during moderate constant-load exercise and warm-up. In athletes and weightlifters, stimulation caused an increase of blood lactate concentration during exercise, confirming a possible influence of stimulation on muscle activity and on glycolytic metabolism of type-II muscular fibers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research proposes a solution for integrating RFID - Radio Frequency Identification technology within a structure based on CFRPs - Carbon Fiber Reinforced Polymers. Therefore, the main objective is to use technology to monitor and track composite components during manufacturing and service life. The study can be divided into two macro-areas. The first portion of the research evaluates the impact of the composite materials used on transmitting the electromagnetic signal to and from the tag. RFID technology communicates through radio frequencies to to track and trace items associated with the tags. In the first instance, a feasibility study was carried out to assess using commercially available tags. Then, after evaluating different solutions, it was decided to incorporate the tags into coupons during production. The second portion of the research is focused on evaluating the impact on the composite material's resistance to tag embedding. It starts with designing tensile test specimens through the FEM model with different housing configurations. Subsequently, the best configuration was tested in the facilities of the In the Faculty of Aerospace Engineering at TU Delft, particularly in the Structure & Materials Laboratory, two tests were conducted: the first one based on ASTM D3039/D3039 - 14 - Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, the second one dividing the path to failure into failure intervals in a load-unload-reload. Both tests were accompanied by instruments such as DIC, AE, C-Scan and Optical Microscopes. The expected result of the inclusion of RFID tags in composite components is that it brings added value to the parts with which it is associated without affecting too much its mechanical properties. This comes first from the automatic identification of RFID during the production cycle and its useful life. As a result, improvements were made in the design of production facilities.