1 resultado para mdx

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this thesis was to investigate the regenerative potential of alternative sources of stem cells, derived from human dental pulp (hDPSCs) and amniotic fluid (hAFSCs) and, specifically, to evaluate their capability to be committed towards osteogenic and myogenic lineages, for the eventual applicability of these stem cells to translational strategies in regenerative medicine of bone and skeletal muscle tissues. The in vitro bone production by stem cells may represent a radical breakthrough in the treatment of pathologies and traumas characterized by critical bone mass defects, with no medical or surgical solution. Human DPSCs and AFSCs were seeded and pre-differentiated on different scaffolds to test their capability to subsequently reach the osteogenic differentiation in vivo, in order to recover critical size bone defects. Fibroin scaffold resulted to be the best scaffold promoting mature bone formation and defect correction when combined to both hDPSCs and hAFSCs. This study also described a culture condition that might allow human DPSCs to be used for human cell therapy in compliance with good manufacturing practices (GMPs): the use of human serum (HS) promoted the expansion and the osteogenic differentiation of hDPSCs in vitro and, furthermore, allowed pre-differentiated hDPSCs to regenerate critical size bone defects in vivo. This thesis also showed that hDPSCs and hAFSCs can be differentiated towards the myogenic lineage in vitro, either when co-cultured with murine myoblasts and when differentiated alone after DNA demethylation treatment. Interestingly, when injected into dystrophic muscles of SCID/mdx mice - animal model of Duchenne Muscular Dystrophy (DMD) - hDPSCs and hAFSCs pre-differentiated after demethylating treatment were able to regenerate the skeletal muscle tissue and, particularly, to restore dystrophin expression. These observations suggest that human DPSCs and AFSCs might be eventually applied to translational strategies, in order to enhance the repair of injured skeletal muscles in DMD patients.