3 resultados para matrix solid-phase dispersion
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The study of protein expression profiles for biomarker discovery in serum and in mammalian cell populations needs the continuous improvement and combination of proteins/peptides separation techniques, mass spectrometry, statistical and bioinformatic approaches. In this thesis work two different mass spectrometry-based protein profiling strategies have been developed and applied to liver and inflammatory bowel diseases (IBDs) for the discovery of new biomarkers. The first of them, based on bulk solid-phase extraction combined with matrix-assisted laser desorption/ionization - Time of Flight mass spectrometry (MALDI-TOF MS) and chemometric analysis of serum samples, was applied to the study of serum protein expression profiles both in IBDs (Crohn’s disease and ulcerative colitis) and in liver diseases (cirrhosis, hepatocellular carcinoma, viral hepatitis). The approach allowed the enrichment of serum proteins/peptides due to the high interaction surface between analytes and solid phase and the high recovery due to the elution step performed directly on the MALDI-target plate. Furthermore the use of chemometric algorithm for the selection of the variables with higher discriminant power permitted to evaluate patterns of 20-30 proteins involved in the differentiation and classification of serum samples from healthy donors and diseased patients. These proteins profiles permit to discriminate among the pathologies with an optimum classification and prediction abilities. In particular in the study of inflammatory bowel diseases, after the analysis using C18 of 129 serum samples from healthy donors and Crohn’s disease, ulcerative colitis and inflammatory controls patients, a 90.7% of classification ability and a 72.9% prediction ability were obtained. In the study of liver diseases (hepatocellular carcinoma, viral hepatitis and cirrhosis) a 80.6% of prediction ability was achieved using IDA-Cu(II) as extraction procedure. The identification of the selected proteins by MALDITOF/ TOF MS analysis or by their selective enrichment followed by enzymatic digestion and MS/MS analysis may give useful information in order to identify new biomarkers involved in the diseases. The second mass spectrometry-based protein profiling strategy developed was based on a label-free liquid chromatography electrospray ionization quadrupole - time of flight differential analysis approach (LC ESI-QTOF MS), combined with targeted MS/MS analysis of only identified differences. The strategy was used for biomarker discovery in IBDs, and in particular of Crohn’s disease. The enriched serum peptidome and the subcellular fractions of intestinal epithelial cells (IECs) from healthy donors and Crohn’s disease patients were analysed. The combining of the low molecular weight serum proteins enrichment step and the LCMS approach allowed to evaluate a pattern of peptides derived from specific exoprotease activity in the coagulation and complement activation pathways. Among these peptides, particularly interesting was the discovery of clusters of peptides from fibrinopeptide A, Apolipoprotein E and A4, and complement C3 and C4. Further studies need to be performed to evaluate the specificity of these clusters and validate the results, in order to develop a rapid serum diagnostic test. The analysis by label-free LC ESI-QTOF MS differential analysis of the subcellular fractions of IECs from Crohn’s disease patients and healthy donors permitted to find many proteins that could be involved in the inflammation process. Among them heat shock protein 70, tryptase alpha-1 precursor and proteins whose upregulation can be explained by the increased activity of IECs in Crohn’s disease were identified. Follow-up studies for the validation of the results and the in-depth investigation of the inflammation pathways involved in the disease will be performed. Both the developed mass spectrometry-based protein profiling strategies have been proved to be useful tools for the discovery of disease biomarkers that need to be validated in further studies.
Resumo:
Human biomonitoring (HBM) is an ideal tool for evaluating toxicant exposure in health risk assessment. Chemical substances or their metabolites related to environmental pollutants can be detected as biomarkers of exposure using a wide variety of biological fluids. Individual exposure to aromatic hydrocarbon compounds (benzene, toluene, and o-xylene –“BTX”) were analysed with a liquid chromatography coupled to electrospray ionisation-mass spectrometry (μHPLC-ESI-MS/MS) method for the simultaneous quantitative detection of the BTX exposure biomarker SPMA, SBMA and o-MBMA in human urine. Urinary S-phenylmercapturic acid (SPMA) is a biomarker proposed by the American Conference of Governmental Industrial Hygienists (ACGIH) for assessing occupational exposure to benzene (Biological Exposure Index of 25 microg/g creatinine). Urinary S-benzylmercapturic (SBMA) and o-methyl S-benzyl mercapturic acid (o-MBMA) are specific toluene and o-xylene metabolites of glutathione detoxicant pathways, proposed as reliable biomarkers of exposure. To this aim a pre-treatment of the urine with solid phase extraction (SPE) and an evaporation step were necessary to concentrate the mercapturic acids before instrumental analysis. A liquid chromatography separation was carried out with a reversed phase capillary column (Synergi 4u Max-RP) using a binary gradient composed of an acquous solution of formic acid 0.07% v/v and methanol. The mercapturic acids were determinated by negative-ion-mass spectrometry and the data were corrected using isotope-labelled analogs as internal standards. The analytical method follows U.S. Food and Drug Administration guidance and was applied to assess exposure to BTX in a group of 396 traffic wardens. The association between biomarker results and individual factors, such as age, sex and tobacco smoke were also investigated. The present work also included improvements in the methods used by modifying various chromatographic parameters and experimental procedures. A partial validation was conducted to evaluate LOD, precision, accuracy, recovery as well as matrix effects. Higher sensitivity will be possible in future biological monitoring programmes, allowing evaluation of very low level of BTX human exposure. Keywords: Human biomonitoring, aromatic hydrocarbons, biomarker of exposure, HPLC-MS/MS.
Valutazione della presenza di contaminanti perfluoroalchilici in alimenti destinati al consumo umano
Resumo:
Le sostanze perfluoralchiliche (PFAS), composti fluorurati ampiamente utilizzati negli ultimi anni in diverse applicazioni industriali e commerciali, sono ritrovati diffusamente nell’ambiente e in diverse specie animali. Recentemente i PFAS hanno destato preoccupazione anche per la salute umana. Il rischio di esposizione è principalmente legato alla dieta (i prodotti ittici sembrano essere gli alimenti più contaminati). Lo scopo di questo lavoro è stato quello di valutare la presenza del perfluorottanosulfonato (PFOS) e dell’acido perfluorottanoico (PFOA), in diverse matrici alimentari: latte vaccino commercialmente disponibile in Italia, latte materno italiano, diverse specie di pesce commercialmente disponibili in Italia e 140 branzini di diverse aree (principalmente Mediterraneo). I campioni di latte sono stati trattati con estrazione liquido-liquido seguita da due fasi di purificazione mediante cartucce SPE prima dell’iniezione nell’UPLC-MS/MS. L’analisi del latte vaccino ha evidenziato una contaminazione diffusa di PFOS, ma a basse concentrazioni (fino a 97 ng/L), mentre il PFOA è stato ritrovato raramente. In questo studio, in grado di individuare anche i livelli delle ultra-tracce, sono state osservate nel latte materno concentrazioni di 15-288 ng/L per il PFOS e di 24-241 ng/LPFOA. Le concentrazioni e le frequenze più alte, per entrambi i PFAS, sono stati ritrovate in campioni di latte forniti da donne primipare, suggerendo un rischio di esposizione per i primogeniti. Il metodo utilizzato per i campioni di pesce era basato su un’estrazione con solvente organico seguita da due fasi di purificazione: una con i sali e una con fase solida dispersiva. L’estratto, analizzato in UPLC-MS/MS, ha confermato la contaminazione di questa matrice a livelli significativi, ma anche l’alta variabilità delle concentrazioni misurate. Il monitoraggio monospecie ha mostrato una contaminazione rilevante (PFOS 11,1- > 10000 ng/L; PFOA < 9-487 ng/L), soprattutto nei branzini pescati, rispetto a quelli allevati.