5 resultados para mass fraction
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Redshift Space Distortions (RSD) are an apparent anisotropy in the distribution of galaxies due to their peculiar motion. These features are imprinted in the correlation function of galaxies, which describes how these structures distribute around each other. RSD can be represented by a distortions parameter $\beta$, which is strictly related to the growth of cosmic structures. For this reason, measurements of RSD can be exploited to give constraints on the cosmological parameters, such us for example the neutrino mass. Neutrinos are neutral subatomic particles that come with three flavours, the electron, the muon and the tau neutrino. Their mass differences can be measured in the oscillation experiments. Information on the absolute scale of neutrino mass can come from cosmology, since neutrinos leave a characteristic imprint on the large scale structure of the universe. The aim of this thesis is to provide constraints on the accuracy with which neutrino mass can be estimated when expoiting measurements of RSD. In particular we want to describe how the error on the neutrino mass estimate depends on three fundamental parameters of a galaxy redshift survey: the density of the catalogue, the bias of the sample considered and the volume observed. In doing this we make use of the BASICC Simulation from which we extract a series of dark matter halo catalogues, characterized by different value of bias, density and volume. This mock data are analysed via a Markov Chain Monte Carlo procedure, in order to estimate the neutrino mass fraction, using the software package CosmoMC, which has been conveniently modified. In this way we are able to extract a fitting formula describing our measurements, which can be used to forecast the precision reachable in future surveys like Euclid, using this kind of observations.
Resumo:
Increasingly stringent exhaust emission limits and higher fuel economy are the main drivers of the engine development process. As a consequence, the complexity of the propulsion units and its subsystems increase, due to the extensive use of sensors and actuators needed to obtain a precise control over the combustion phase. Since engine calibration process consumes most of the development time, new tools and methodologies are needed to shorten the development time and increase the performance attainable. Real time combustion analysis, based on the in-cylinder pressure signal, can significantly improve the calibration of the engine control strategies and the development of new algorithms, giving instantaneous feedback on the engine behavior. A complete combustion analysis and diagnosis system has been developed, capable of evaluating the most important indicators about the combustion process, such as indicated mean effective pressure, heat release, mass fraction burned and knock indexes. Such a tool is built on top of a flexible, modular and affordable hardware platform, capable of satisfying the requirements needed for accuracy and precision, but also enabling the use directly on-board the vehicle, due to its small form factor.
Resumo:
Combustion control is one of the key factors to obtain better performances and lower pollutant emissions for diesel, spark ignition and HCCI engines. An algorithm that allows estimating, as an example, the mean indicated torque for each cylinder, could be easily used in control strategies, in order to carry out cylinders trade-off, control the cycle to cycle variation, or detect misfires. A tool that allows evaluating the 50% of Mass Fraction Burned (MFB50), or the net Cumulative Heat Release (CHRNET), or the ROHR peak value (Rate of Heat Release), could be used to optimize spark advance or to detect knock in gasoline engines and to optimize injection pattern in diesel engines. Modern management systems are based on the control of the mean indicated torque produced by the engine: they need a real or virtual sensor in order to compare the measured value with the target one. Many studies have been performed in order to obtain an accurate and reliable over time torque estimation. The aim of this PhD activity was to develop two different algorithms: the first one is based on the instantaneous engine speed fluctuations measurement. The speed signal is picked up directly from the sensor facing the toothed wheel mounted on the engine for other control purposes. The engine speed fluctuation amplitudes depend on the combustion and on the amount of torque delivered by each cylinder. The second algorithm processes in-cylinder pressure signals in the angular domain. In this case a crankshaft encoder is not necessary, because the angular reference can be obtained using a standard sensor wheel. The results obtained with these two methodologies are compared in order to evaluate which one is suitable for on board applications, depending on the accuracy required.
Resumo:
With the goal of studying ML along the RGB, mid-IR observations of a carefully selected sample of 17 Galactic globular clusters (GGCs) with different metallicity and horizontal branch (HB) morphology have been secured with IRAC on board Spitzer: a global sample counting about 8000 giant has been obtained. Suitable complementary photometry in the optical and near-IR has been also secured in order to properly characterize the stellar counterparts to the Spitzer sources and their photospheric parameters. Stars with color (i.e. dust) excess have been identified, their likely circumstellar emission quantified and modelled, and empirical estimates of mass loss rates and timescales obtained. We find that mass loss rates increases with increasing stellar luminosity and decreasing metallicity. For a given luminosity, we find that ML rates are systematically higher than the prediction by extrapolating the Reimers law. CMDs constructed from ground based near-IR and IRAC bands show that at a given luminosity some stars have dusty envelopes and others do not. From this, we deduce that the mass loss is episodic and is ``on'' for some fraction of the time. The total mass lost on the RGB can be easily computed by multiplying ML rates by the ML timescales and integrating over the evolutionary timescale. The average total mass lost moderately increases with increasing metallicity, and for a given metallicity is systematically higher in clusters with extended blue HB.
Resumo:
This Thesis presents the results of my work on how galaxy clusters form by the accretion of sub-clumps and diffuse materials, and how the accreted energy is distributed in the X-ray emitting plasma. Indeed, on scales larger than tens of millions of light years, the Universe is self-organised by gravity into a spiderweb, the Cosmic Web. Galaxy clusters are the knots of this Cosmic Web, but a strong definition of filaments (which link different knots) and their physical proprieties, is still uncertain. Even if this pattern was determined by studying the spatial distribution of galaxies in the optical band, recently, also in the X-rays probes of filamentary structures around galaxy clusters were obtained. Therefore, given these observational facilities, the galaxy clusters’ outskirts are the best candidate regions to detect filaments and study their physical characteristics. However, from X-rays observations, we have only a few detections of cosmic filaments to date. On the other hand, it is crucial to understand how the accreted energy is dissipated in the baryon content of galaxy clusters and groups. Indeed, it is well known that in the central region of galaxy clusters and groups, the baryon fraction increases with the halo mass. On the outer region, the lack of X-rays constraints influences our understanding of the evolution of baryons in the halos volume. The standard assumption of “closed-box” system, for which the baryon fraction should approach the cosmological ratio Omega_bar/Omega_m, for galaxy clusters and groups seems to be too strong, especially for less massive objects. Moreover, a complete redshift evolution of baryons in galaxy clusters and groups is still missing.