2 resultados para market portfolio

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis gives an overview of the history of gold per se, of gold as an investment good and offers some institutional details about gold and other precious metal markets. The goal of this study is to investigate the role of gold as a store of value and hedge against negative market movements in turbulent times. I investigate gold’s ability to act as a safe haven during periods of financial stress by employing instrumental variable techniques that allow for time varying conditional covariance. I find broad evidence supporting the view that gold acts as an anchor of stability during market downturns. During periods of high uncertainty and low stock market returns, gold tends to have higher than average excess returns. The effectiveness of gold as a safe haven is enhanced during periods of extreme crises: the largest peaks are observed during the global financial crises of 2007-2009 and, in particular, during the Lehman default (October 2008). A further goal of this thesis is to investigate whether gold provides protection from tail risk. I address the issue of asymmetric precious metal behavior conditioned to stock market performance and provide empirical evidence about the contribution of gold to a portfolio’s systematic skewness and kurtosis. I find that gold has positive coskewness with the market portfolio when the market is skewed to the left. Moreover, gold shows low cokurtosis with the market returns during volatile periods. I therefore show that gold is a desirable investment good to risk averse investors, since it tends to decrease the probability of experiencing extreme bad outcomes, and the magnitude of losses in case such events occur. Gold thus bears very important and under-researched characteristics as an asset class per se, which this thesis contributed to address and unveil.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Let’s put ourselves in the shoes of an energy company. Our fleet of electricity production plants mainly includes gas, hydroelectric and waste-to-energy plants. We also sold contracts for the supply of gas and electricity. For each year we have to plan the trading of the volumes needed by the plants and customers: better to fix the price of these volumes in advance with the so-called forward contracts, instead of waiting for the delivery months, exposing ourselves to price uncertainty. Here’s the thing: trying to keep uncertainty under control in a market that has never shown such extreme scenarios as in recent years: a pandemic, a worsening climate crisis and a war that is affecting economies around the world have made the energy market more volatile than ever. How to make decisions in such uncertain contexts? There is an optimization problem: given a year, we need to choose the optimal planning of volume trading times, to meet the needs of our portfolio at the best prices, taking into account the liquidity constraints given by the market and the risk constraints imposed by the company. Algorithms are needed for the generation of market scenarios over a finite time horizon, that is, a probabilistic distribution that allows a view of all the dates between now and the end of the year of interest. Algorithms are needed to solve the optimization problem: we have proposed more than one and compared them; a very simple one, which avoids considering part of the complexity, moving on to a scenario approach and finally a reinforcement learning approach.