12 resultados para management optimization in age-structured models
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis presents SEELF (Sustainable EEL fishery) Index, a methodology for evaluation of European eel (Anguilla anguilla) for the implementation of an effective Eel Management Plan, as defined by EU Regulation No.1100/2007. SEELF uses internal and external indices, age and blood parameters, and selects suitable specimen for restocking; it is also a reliable tool for eel stock management. In fact, SEELF Index, was developed in two versions: SEELF A, to be used in field operations (catch&release, eel status monitoring) and SEELF B to be used for quality control (food production) and research (eel status monitoring). Health status was evaluated also by biomarker analysis (ChE), and data were compared with age of eel. Age determination was performed with otolith reading and fish scale reading and a calibration between the two methods was possible. The study area was the Comacchio lagoon, a brackish coastal lagoon in Italy, well known as an example of suitable environment for eel fishery, where the capability to use the local natural resources has long been a key factor for a successful fishery management. Comacchio lagoon is proposed as an area where an effective EMP can be performed, in agreement with the main features (management of basins, reduction of mortality due to predators,etc.) highlighted for designation of European Restocking Area (ERA). The ERA is a new concept, proposed as a pillar of a new strategy on eel management and conservation. Furthermore, the features of ERAs can be useful in the framework of European Scale Eel Management Plan (ESEMP), proposed as a European scale implementation of EMP, providing a more effectiveness of conservation measures for eel management.
Resumo:
The Alzheimer’s disease (AD), the most prevalent form of age-related dementia, is a multifactorial and heterogeneous neurodegenerative disease. The molecular mechanisms underlying the pathogenesis of AD are yet largely unknown. However, the etiopathogenesis of AD likely resides in the interaction between genetic and environmental risk factors. Among the different factors that contribute to the pathogenesis of AD, amyloid-beta peptides and the genetic risk factor apoE4 are prominent on the basis of genetic evidence and experimental data. ApoE4 transgenic mice have deficits in spatial learning and memory associated with inflammation and brain atrophy. Evidences suggest that apoE4 is implicated in amyloid-beta accumulation, imbalance of cellular antioxidant system and in apoptotic phenomena. The mechanisms by which apoE4 interacts with other AD risk factors leading to an increased susceptibility to the dementia are still unknown. The aim of this research was to provide new insights into molecular mechanisms of AD neurodegeneration, investigating the effect of amyloid-beta peptides and apoE4 genotype on the modulation of genes and proteins differently involved in cellular processes related to aging and oxidative balance such as PIN1, SIRT1, PSEN1, BDNF, TRX1 and GRX1. In particular, we used human neuroblastoma cells exposed to amyloid-beta or apoE3 and apoE4 proteins at different time-points, and selected brain regions of human apoE3 and apoE4 targeted replacement mice, as in vitro and in vivo models, respectively. All genes and proteins studied in the present investigation are modulated by amyloid-beta and apoE4 in different ways, suggesting their involvement in the neurodegenerative mechanisms underlying the AD. Finally, these proteins might represent novel potential diagnostic and therapeutic targets in AD.
Resumo:
Thermal effects are rapidly gaining importance in nanometer heterogeneous integrated systems. Increased power density, coupled with spatio-temporal variability of chip workload, cause lateral and vertical temperature non-uniformities (variations) in the chip structure. The assumption of an uniform temperature for a large circuit leads to inaccurate determination of key design parameters. To improve design quality, we need precise estimation of temperature at detailed spatial resolution which is very computationally intensive. Consequently, thermal analysis of the designs needs to be done at multiple levels of granularity. To further investigate the flow of chip/package thermal analysis we exploit the Intel Single Chip Cloud Computer (SCC) and propose a methodology for calibration of SCC on-die temperature sensors. We also develop an infrastructure for online monitoring of SCC temperature sensor readings and SCC power consumption. Having the thermal simulation tool in hand, we propose MiMAPT, an approach for analyzing delay, power and temperature in digital integrated circuits. MiMAPT integrates seamlessly into industrial Front-end and Back-end chip design flows. It accounts for temperature non-uniformities and self-heating while performing analysis. Furthermore, we extend the temperature variation aware analysis of designs to 3D MPSoCs with Wide-I/O DRAM. We improve the DRAM refresh power by considering the lateral and vertical temperature variations in the 3D structure and adapting the per-DRAM-bank refresh period accordingly. We develop an advanced virtual platform which models the performance, power, and thermal behavior of a 3D-integrated MPSoC with Wide-I/O DRAMs in detail. Moving towards real-world multi-core heterogeneous SoC designs, a reconfigurable heterogeneous platform (ZYNQ) is exploited to further study the performance and energy efficiency of various CPU-accelerator data sharing methods in heterogeneous hardware architectures. A complete hardware accelerator featuring clusters of OpenRISC CPUs, with dynamic address remapping capability is built and verified on a real hardware.
Resumo:
The topic of the Ph.D project focuses on the modelling of the soil-water dynamics inside an instrumented embankment section along Secchia River (Cavezzo (MO)) in the period from 2017 to 2018 and the quantification of the performance of the direct and indirect simulations . The commercial code Hydrus2D by Pc-Progress has been chosen to run the direct simulations. Different soil-hydraulic models have been adopted and compared. The parameters of the different hydraulic models are calibrated using a local optimization method based on the Levenberg - Marquardt algorithm implemented in the Hydrus package. The calibration program is carried out using different types of dataset of observation points, different weighting distributions, different combinations of optimized parameters and different initial sets of parameters. The final goal is an in-depth study of the potentialities and limits of the inverse analysis when applied to a complex geotechnical problem as the case study. The second part of the research focuses on the effects of plant roots and soil-vegetation-atmosphere interaction on the spatial and temporal distribution of pore water pressure in soil. The investigated soil belongs to the West Charlestown Bypass embankment, Newcastle, Australia, that showed in the past years shallow instabilities and the use of long stem planting is intended to stabilize the slope. The chosen plant species is the Malaleuca Styphelioides, native of eastern Australia. The research activity included the design and realization of a specific large scale apparatus for laboratory experiments. Local suction measurements at certain intervals of depth and radial distances from the root bulb are recorded within the vegetated soil mass under controlled boundary conditions. The experiments are then reproduced numerically using the commercial code Hydrus 2D. Laboratory data are used to calibrate the RWU parameters and the parameters of the hydraulic model.
Resumo:
The main topic of this thesis is confounding in linear regression models. It arises when a relationship between an observed process, the covariate, and an outcome process, the response, is influenced by an unmeasured process, the confounder, associated with both. Consequently, the estimators for the regression coefficients of the measured covariates might be severely biased, less efficient and characterized by misleading interpretations. Confounding is an issue when the primary target of the work is the estimation of the regression parameters. The central point of the dissertation is the evaluation of the sampling properties of parameter estimators. This work aims to extend the spatial confounding framework to general structured settings and to understand the behaviour of confounding as a function of the data generating process structure parameters in several scenarios focusing on the joint covariate-confounder structure. In line with the spatial statistics literature, our purpose is to quantify the sampling properties of the regression coefficient estimators and, in turn, to identify the most prominent quantities depending on the generative mechanism impacting confounding. Once the sampling properties of the estimator conditionally on the covariate process are derived as ratios of dependent quadratic forms in Gaussian random variables, we provide an analytic expression of the marginal sampling properties of the estimator using Carlson’s R function. Additionally, we propose a representative quantity for the magnitude of confounding as a proxy of the bias, its first-order Laplace approximation. To conclude, we work under several frameworks considering spatial and temporal data with specific assumptions regarding the covariance and cross-covariance functions used to generate the processes involved. This study allows us to claim that the variability of the confounder-covariate interaction and of the covariate plays the most relevant role in determining the principal marker of the magnitude of confounding.
Resumo:
The thesis is set in three different parts, according to the relative experimental models. First, the domestic pig (Sus scrofa) is part of the study on reproductive biotechnologies: the transgenesis technique of Sperm Mediated Gene Transfer is widely studied starting from the quality of the semen, through the study of multiple uptakes of exogenous DNA and lastly used in the production of multi-transgenic blastocysts. Finally we managed to couple the transgenesis pipeline with sperm sorting and therefore produced transgenic embryos of predetermined sex. In the second part of the thesis the attention is on the fruit fly (Drosophila melanogaster) and on its derived cell line: the S2 cells. The in vitro and in vivo models are used to develop and validate an efficient way to knock down the myc gene. First an efficient in vitro protocol is described, than we demonstrate how the decrease in myc transcript remarkably affects the ribosome biogenesis through the study of Polysome gradients, rRNA content and qPCR. In vivo we identified two optimal drivers for the conditional silencing of myc, once the flies are fed with RU486: the first one is throughout the whole body (Tubulin), while the second is a head fat body driver (S32). With these results we present a very efficient model to study the role of myc in multiple aspects of translation. In the third and last part, the focus is on human derived lung fibroblasts (hLF-1), mouse tail fibroblasts and mouse tissues. We developed an efficient assay to quantify the total protein content of the nucleus on a single cell level via fluorescence. We coupled the protocol with classical immunofluorescence so to have at the same time general and particular information, demonstrating that during senescence nuclear proteins increase by 1.8 fold either in human cells, mouse cells and mouse tissues.
Resumo:
Non-small-cell lung cancer (NSCLC) represents the leading cause of cancer death worldwide, and 5-year survival is about 16% for patients diagnosed with advanced lung cancer and about 70-90% when the disease is diagnosed and treated at earlier stages. Treatment of NSCLC is changed in the last years with the introduction of targeted agents, such as gefitinib and erlotinib, that have dramatically changed the natural history of NSCLC patients carrying specific mutations in the EGFR gene, or crizotinib, for patients with the EML4-ALK translocation. However, such patients represent only about 15-20% of all NSCLC patients, and for the remaining individuals conventional chemotherapy represents the standard choice yet, but response rate to thise type of treatment is only about 20%. Development of new drugs and new therapeutic approaches are so needed to improve patients outcome. In this project we aimed to analyse the antitumoral activity of two compounds with the ability to inhibit histone deacethylases (ACS 2 and ACS 33), derived from Valproic Acid and conjugated with H2S, in human cancer cell lines derived from NSCLC tissues. We showed that ACS 2 represents the more promising agent. It showed strong antitumoral and pro-apoptotic activities, by inducing membrane depolarization, cytocrome-c release and caspase 3 and 9 activation. It was able to reduce the invasive capacity of cells, through inhibition of metalloproteinases expression, and to induce a reduced chromatin condensation. This last characteristic is probably responsible for the observed high synergistic activity in combination with cisplatin. In conclusion our results highlight the potential role of the ACS 2 compound as new therapeutic option for NSCLC patients, especially in combination with cisplatin. If validated in in vivo models, this compound should be worthy for phase I clinical trials.
Resumo:
Nephrops norvegicus is a sedentary bottom-dwelling crustacean that represents one of the main commercial species exploited in the Adriatic Sea (Central Mediterranean). An evaluation of the status of this important resource is thus extremely important in order to manage it in a sustainable way. The evaluation of N. norvegicus is complicated by several issues, mainly: (i) the complex biology and behaviour of the species itself, (ii) the presence of subpopulations with different biological traits within the same stock unit. Relevant concentration of N.norvegicus occurs within the Pomo/Jabuka Pits area which is characterised by peculiar oceanographic and geophysical conditions. This area represented for a long time an important fishing ground shared by Italian and Croatian fleets and recently a Fishery Restricted Area (FRA) was established there. The aim of the present study is to perform for the first time an evaluation of the status of the N.norvegicus subpopulation inhabiting the Pomo/Jabuka Pits also accounting for the possible effects on it of the management measures. To achieve this, the principal fisheryindependent and fishery-dependent dataset available for the study area were firstly analysed and then treated. Data collected by the CNR-IRBIM of Ancona through both indirect (“UWTV”) and direct (trawling) methods were refined by means of a revision of the time series and related biases, and a modelling approach accounting for environmental and fishery effects, respectively. Commercial data for both Italy and Croatia were treated in order to obtain landings and length distributions for the Pomo area only; an historical reconstruction of data starting from 1970 was carried out for both countries. The obtained information was used as input for a Bayesian length-based stock assessment model developed through the CASAL software; the flexibility of this model is recommended for N.norvegicus and similar species allowing to deal with sex- and fleet-based integrated assessment method
Resumo:
The presented study aimed to evaluate the productive and physiological behavior of a 2D multileader apple training systems in the Italian environment both investigating the possibility to increase yield and precision crop load management resolution. Another objective was to find valuable thinning thresholds guaranteeing high yields and matching fruit market requirements. The thesis consists in three studies carried out in a Pink Lady®- Rosy Glow apple orchard trained as a planar multileader training system (double guyot). Fruiting leaders (uprights) dimension, crop load, fruit quality, flower and physiological (leaf gas exchanges and fruit growth rate) data were collected and analysed. The obtained results found that uprights present dependence among each other and as well as a mutual support during fruit development. However, individual upright fruit load and upright’s fruit load distribution on the tree (~ plant crop load) seems to define both upright independence from the other, and single upright crop load effects on the final fruit quality production. Correlations between fruit load and harvest fruit size were found and thanks to that valuable thinning thresholds, based on different vegetative parameters, were obtained. Moreover, it comes out that an upright’s fruit load random distribution presents a widening of those thinning thresholds, keeping un-altered fruit quality. For this reason, uprights resulted a partially physiologically-dependent plant unit. Therefore, if considered and managed as independent, then no major problems on final fruit quality and production occurred. This partly confirmed the possibility to shift crop load management to single upright. The finding of the presented studies together with the benefits coming from multileader planar training systems suggest a high potentiality of the 2D multileader training systems to increase apple production sustainability and profitability for Italian apple orchard, while easing the advent of automation in fruit production.
Resumo:
The present manuscript focuses on out of equilibrium physics in two dimensional models. It has the purpose of presenting some results obtained as part of out of equilibrium dynamics in its non perturbative aspects. This can be understood in two different ways: the former is related to integrability, which is non perturbative by nature; the latter is related to emergence of phenomena in the out of equilibirum dynamics of non integrable models that are not accessible by standard perturbative techniques. In the study of out of equilibirum dynamics, two different protocols are used througout this work: the bipartitioning protocol, within the Generalised Hydrodynamics (GHD) framework, and the quantum quench protocol. With GHD machinery we study the Staircase Model, highlighting how the hydrodynamic picture sheds new light into the physics of Integrable Quantum Field Theories; with quench protocols we analyse different setups where a non-perturbative description is needed and various dynamical phenomena emerge, such as the manifistation of a dynamical Gibbs effect, confinement and the emergence of Bloch oscillations preventing thermalisation.
Resumo:
Let’s put ourselves in the shoes of an energy company. Our fleet of electricity production plants mainly includes gas, hydroelectric and waste-to-energy plants. We also sold contracts for the supply of gas and electricity. For each year we have to plan the trading of the volumes needed by the plants and customers: better to fix the price of these volumes in advance with the so-called forward contracts, instead of waiting for the delivery months, exposing ourselves to price uncertainty. Here’s the thing: trying to keep uncertainty under control in a market that has never shown such extreme scenarios as in recent years: a pandemic, a worsening climate crisis and a war that is affecting economies around the world have made the energy market more volatile than ever. How to make decisions in such uncertain contexts? There is an optimization problem: given a year, we need to choose the optimal planning of volume trading times, to meet the needs of our portfolio at the best prices, taking into account the liquidity constraints given by the market and the risk constraints imposed by the company. Algorithms are needed for the generation of market scenarios over a finite time horizon, that is, a probabilistic distribution that allows a view of all the dates between now and the end of the year of interest. Algorithms are needed to solve the optimization problem: we have proposed more than one and compared them; a very simple one, which avoids considering part of the complexity, moving on to a scenario approach and finally a reinforcement learning approach.
Resumo:
Alpha-particle emitters, notably used in 224Ra-DaRT, have emerged as effective in overcoming radiation resistance and providing targeted cancer therapy. These emitters cause DNA double-strand breaks, visualizable in human lymphocytes. The 224Ra DaRT technique, using a decay chain from seeds, extends alpha particle range, achieving complete tumor destruction while sparing healthy tissue. This thesis examines a biokinetic model, validated with patient data, and a feasibility study on skin squamous cell carcinomas are discussed. The study reports 75% tumor complete response rate and 48% patients experiencing acute grade 2 toxicity, resolving within a month. An observed abscopal effect (AE), where tumor regression occurs at non-irradiated sites, is examined, highlighting DaRT's potential in triggering anti-tumor immune responses. This effect, coupled with DaRT's high-linear energy transfer (LET), suggests its superiority over low-LET radiation in certain clinical scenarios. Improvements to DaRT, including the use of an external radio-opaque template for treatment planning, are explored. This advancement aids in determining source numbers for optimal tumor coverage, enhancing DaRT’s safety. The thesis outlines a typical DaRT procedure, from tumor measurements to source assessment and administration, emphasizing the importance of precise seed positioning. Furthermore, the thesis discusses DaRT's potential in treating prostate cancer, a prevalent global health issue, by offering an alternative to traditional salvage therapies. DaRT seeds, delivering alpha particle-based interstitial radiation, require precision in seed insertion due to their limited tissue range. In conclusion, the thesis advocates for DaRT's role in treating solid tumors, emphasizing its improved radiobiological potency and potential benefits over beta and gamma source-based therapies. Ongoing studies are assessing DaRT's feasibility in treating various solid tumors, including pancreatic, breast, prostate, and vulvar malignancies, suggesting a promising future in cancer treatment.