6 resultados para liquids and polymers

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this thesis is to study how explosive behavior and geophysical signals in a volcanic conduit are related to the development of overpressure in slug-driven eruptions. A first suite of laboratory experiments of gas slugs ascending in analogue conduits was performed. Slugs ascended into a range of analogue liquids and conduit diameters to allow proper scaling to the natural volcanoes. The geometrical variation of the slug in response to the explored variables was parameterised. Volume of gas slug and rheology of the liquid phase revealed the key parameters in controlling slug overpressure at bursting. Founded on these results, a theoretical model to calculate burst overpressure for slug-driven eruptions was developed. The dimensionless approach adopted allowed to apply the model to predict bursting pressure of slugs at Stromboli. Comparison of predicted values with measured data from Stromboli volcano showed that the model can explain the entire spectrum of observed eruptive styles at Stromboli – from low-energy puffing, through normal Strombolian eruptions, up to paroxysmal explosions – as manifestations of a single underlying physical process. Finally, another suite of laboratory experiments was performed to observe oscillatory pressure and forces variations generated during the expansion and bursting of gas slugs ascending in a conduit. Two end-member boundary conditions were imposed at the base of the pipe, simulating slug ascent in closed base (zero magma flux) and open base (constant flux) conduit. At the top of the pipe, a range of boundary conditions that are relevant at a volcanic vent were imposed, going from open to plugged vent. The results obtained illustrate that a change in boundary conditions in the conduit concur to affect the dynamic of slug expansion and burst: an upward flux at the base of the conduit attenuates the magnitude of the pressure transients, while a rheological stiffening in the top-most region of conduit changes dramatically the magnitude of the observed pressure transients, favoring a sudden, and more energetic pressure release into the overlying atmosphere. Finally, a discussion on the implication of changing boundary on the oscillatory processes generated at the volcanic scale is also given.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phenol and cresols represent a good example of primary chemical building blocks of which 2.8 million tons are currently produced in Europe each year. Currently, these primary phenolic building blocks are produced by refining processes from fossil hydrocarbons: 5% of the world-wide production comes from coal (which contains 0.2% of phenols) through the distillation of the tar residue after the production of coke, while 95% of current world production of phenol is produced by the distillation and cracking of crude oil. In nature phenolic compounds are present in terrestrial higher plants and ferns in several different chemical structures while they are essentially absent in lower organisms and in animals. Biomass (which contain 3-8% of phenols) represents a substantial source of secondary chemical building blocks presently underexploited. These phenolic derivatives are currently used in tens thousand of tons to produce high cost products such as food additives and flavours (i.e. vanillin), fine chemicals (i.e. non-steroidal anti-inflammatory drugs such as ibuprofen or flurbiprofen) and polymers (i.e. poly p-vinylphenol, a photosensitive polymer for electronic and optoelectronic applications). European agrifood waste represents a low cost abundant raw material (250 millions tons per year) which does not subtract land use and processing resources from necessary sustainable food production. The class of phenolic compounds is essentially constituted by simple phenols, phenolic acids, hydroxycinnamic acid derivatives, flavonoids and lignans. As in the case of coke production, the removal of the phenolic contents from biomass upgrades also the residual biomass. Focusing on the phenolic component of agrifood wastes, huge processing and marketing opportunities open since phenols are used as chemical intermediates for a large number of applications, ranging from pharmaceuticals, agricultural chemicals, food ingredients etc. Following this approach we developed a biorefining process to recover the phenolic fraction of wheat bran based on enzymatic commercial biocatalysts in completely water based process, and polymeric resins with the aim of substituting secondary chemical building blocks with the same compounds naturally present in biomass. We characterized several industrial enzymatic product for their ability to hydrolize the different molecular features that are present in wheat bran cell walls structures, focusing on the hydrolysis of polysaccharidic chains and phenolics cross links. This industrial biocatalysts were tested on wheat bran and the optimized process allowed to liquefy up to the 60 % of the treated matter. The enzymatic treatment was also able to solubilise up to the 30 % of the alkali extractable ferulic acid. An extraction process of the phenolic fraction of the hydrolyzed wheat bran based on an adsorbtion/desorption process on styrene-polyvinyl benzene weak cation-exchange resin Amberlite IRA 95 was developed. The efficiency of the resin was tested on different model system containing ferulic acid and the adsorption and desorption working parameters optimized for the crude enzymatic hydrolyzed wheat bran. The extraction process developed had an overall yield of the 82% and allowed to obtain concentrated extracts containing up to 3000 ppm of ferulic acid. The crude enzymatic hydrolyzed wheat bran and the concentrated extract were finally used as substrate in a bioconversion process of ferulic acid into vanillin through resting cells fermentation. The bioconversion process had a yields in vanillin of 60-70% within 5-6 hours of fermentation. Our findings are the first step on the way to demonstrating the economical feasibility for the recovery of biophenols from agrifood wastes through a whole crop approach in a sustainable biorefining process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thiophene oligomers (OTs) and polymers (PTs) are currently attracting remarkable attention as organic materials showing semiconducting, fluorescent, nonlinear optical and liquid crystalline properties. All these properties can be fine-tuned through minor structural modifications. As a consequence, thiophene oligomers and polymers are among the most investigated compounds for applications in organic electronics, optoelectronics and thin film devices such as field effect transistors (FETs), light emitting diodes (LEDs) and photovoltaic devices (PVDs). Our research aims to explore the self-assembly features and the optical, electrical and photovoltaic properties of a class of thiophene based materials so far scarcely investigated, namely that of oligo- and polythiophenes head-to-head substituted with alkyl or S-alkyl chains. In particular, we synthesized these compounds in short reaction times, high yields, high purity and environmentally friendly procedures taking advantage of ultrasound (US) and microwave (MW) enabling technologies in Suzuki-Miyaura cross-couplings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the thesis, we discuss some aspects of 1D quantum systems related to entanglement entropies; in particular, we develop a new numerical method for the detection of crossovers in Luttinger liquids, and we discuss the behaviour of Rényi entropies in open conformal systems, when the boundary conditions preserve their conformal invariance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of the work was to explore the practical applicability of molecular dynamics at different length and time scales. From nanoparticles system over colloids and polymers to biological systems like membranes and finally living cells, a broad range of materials was considered from a theoretical standpoint. In this dissertation five chemistry-related problem are addressed by means of theoretical and computational methods. The main results can be outlined as follows. (1) A systematic study of the effect of the concentration, chain length, and charge of surfactants on fullerene aggregation is presented. The long-discussed problem of the location of C60 in micelles was addressed and fullerenes were found in the hydrophobic region of the micelles. (2) The interactions between graphene sheet of increasing size and phospholipid membrane are quantitatively investigated. (3) A model was proposed to study structure, stability, and dynamics of MoS2, a material well-known for its tribological properties. The telescopic movement of nested nanotubes and the sliding of MoS2 layers is simulated. (4) A mathematical model to gain understaning of the coupled diffusion-swelling process in poly(lactic-co-glycolic acid), PLGA, was proposed. (5) A soft matter cell model is developed to explore the interaction of living cell with artificial surfaces. The effect of the surface properties on the adhesion dynamics of cells are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gas separation membranes of high CO2 permeability and selectivity have great potential in both natural gas sweetening and carbon dioxide capture. Many modified PIM membranes results permselectivity above Robinson upper bound. The big problem that should be solved for these polymers to be commercialized is their aging through time. In high glassy polymeric membrane such as PIM-1 and its modifications, solubility selectivity has more contribution towards permselectivity than diffusivity selectivity. So in this thesis work pure and mixed gas sorption behavior of carbon dioxide and methane in three PIM-based membranes (PIM-1, TZPIM-1 and AO-PIM-1) and Polynonene membrane is rigorously studied. Sorption experiment is performed at different temperatures and molar fraction. Sorption isotherms found from the experiment shows that there is a decrease of solubility as the temperature of the experiment increases for both gases in all polymers. There is also a decrease of solubility due to the presence of the other gas in the system in the mixed gas experiments due to competitive sorption effect. Variation of solubility is more visible in methane sorption than carbon dioxide, which will make the mixed gas solubility selectivity higher than that of pure gas solubility selectivity. Modeling of the system using NELF and Dual mode sorption model estimates the experimental results correctly Sorption of gases in heat treated and untreated membranes show that the sorption isotherms don’t vary due to the application of heat treatment for both carbon dioxide and methane. But there is decrease in the diffusivity coefficient and permeability of pure gases due to heat treatment. Both diffusivity coefficient and permeability decreases with increasing of heat treatment temperature. Diffusivity coefficient calculated from transient sorption experiment and steady state permeability experiment is also compared in this thesis work. The results reveal that transient diffusivity coefficient is higher than steady state diffusivity selectivity.