3 resultados para learning in play-based environments
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Actual trends in software development are pushing the need to face a multiplicity of diverse activities and interaction styles characterizing complex and distributed application domains, in such a way that the resulting dynamics exhibits some grade of order, i.e. in terms of evolution of the system and desired equilibrium. Autonomous agents and Multiagent Systems are argued in literature as one of the most immediate approaches for describing such a kind of challenges. Actually, agent research seems to converge towards the definition of renewed abstraction tools aimed at better capturing the new demands of open systems. Besides agents, which are assumed as autonomous entities purposing a series of design objectives, Multiagent Systems account new notions as first-class entities, aimed, above all, at modeling institutional/organizational entities, placed for normative regulation, interaction and teamwork management, as well as environmental entities, placed as resources to further support and regulate agent work. The starting point of this thesis is recognizing that both organizations and environments can be rooted in a unifying perspective. Whereas recent research in agent systems seems to account a set of diverse approaches to specifically face with at least one aspect within the above mentioned, this work aims at proposing a unifying approach where both agents and their organizations can be straightforwardly situated in properly designed working environments. In this line, this work pursues reconciliation of environments with sociality, social interaction with environment based interaction, environmental resources with organizational functionalities with the aim to smoothly integrate the various aspects of complex and situated organizations in a coherent programming approach. Rooted in Agents and Artifacts (A&A) meta-model, which has been recently introduced both in the context of agent oriented software engineering and programming, the thesis promotes the notion of Embodied Organizations, characterized by computational infrastructures attaining a seamless integration between agents, organizations and environmental entities.
Resumo:
Image-to-image (i2i) translation networks can generate fake images beneficial for many applications in augmented reality, computer graphics, and robotics. However, they require large scale datasets and high contextual understanding to be trained correctly. In this thesis, we propose strategies for solving these problems, improving performances of i2i translation networks by using domain- or physics-related priors. The thesis is divided into two parts. In Part I, we exploit human abstraction capabilities to identify existing relationships in images, thus defining domains that can be leveraged to improve data usage efficiency. We use additional domain-related information to train networks on web-crawled data, hallucinate scenarios unseen during training, and perform few-shot learning. In Part II, we instead rely on physics priors. First, we combine realistic physics-based rendering with generative networks to boost outputs realism and controllability. Then, we exploit naive physical guidance to drive a manifold reorganization, which allowed generating continuous conditions such as timelapses.
Resumo:
The application of modern ICT technologies is radically changing many fields pushing toward more open and dynamic value chains fostering the cooperation and integration of many connected partners, sensors, and devices. As a valuable example, the emerging Smart Tourism field derived from the application of ICT to Tourism so to create richer and more integrated experiences, making them more accessible and sustainable. From a technological viewpoint, a recurring challenge in these decentralized environments is the integration of heterogeneous services and data spanning multiple administrative domains, each possibly applying different security/privacy policies, device and process control mechanisms, service access, and provisioning schemes, etc. The distribution and heterogeneity of those sources exacerbate the complexity in the development of integrating solutions with consequent high effort and costs for partners seeking them. Taking a step towards addressing these issues, we propose APERTO, a decentralized and distributed architecture that aims at facilitating the blending of data and services. At its core, APERTO relies on APERTO FaaS, a Serverless platform allowing fast prototyping of the business logic, lowering the barrier of entry and development costs to newcomers, (zero) fine-grained scaling of resources servicing end-users, and reduced management overhead. APERTO FaaS infrastructure is based on asynchronous and transparent communications between the components of the architecture, allowing the development of optimized solutions that exploit the peculiarities of distributed and heterogeneous environments. In particular, APERTO addresses the provisioning of scalable and cost-efficient mechanisms targeting: i) function composition allowing the definition of complex workloads from simple, ready-to-use functions, enabling smarter management of complex tasks and improved multiplexing capabilities; ii) the creation of end-to-end differentiated QoS slices minimizing interfaces among application/service running on a shared infrastructure; i) an abstraction providing uniform and optimized access to heterogeneous data sources, iv) a decentralized approach for the verification of access rights to resources.