5 resultados para lateral and longitudinal motion compensation
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
For its particular position and the complex geological history, the Northern Apennines has been considered as a natural laboratory to apply several kinds of investigations. By the way, it is complicated to joint all the knowledge about the Northern Apennines in a unique picture that explains the structural and geological emplacement that produced it. The main goal of this thesis is to put together all information on the deformation - in the crust and at depth - of this region and to describe a geodynamical model that takes account of it. To do so, we have analyzed the pattern of deformation in the crust and in the mantle. In both cases the deformation has been studied using always information recovered from earthquakes, although using different techniques. In particular the shallower deformation has been studied using seismic moment tensors information. For our purpose we used the methods described in Arvidsson and Ekstrom (1998) that allowing the use in the inversion of surface waves [and not only of the body waves as the Centroid Moment Tensor (Dziewonski et al., 1981) one] allow to determine seismic source parameters for earthquakes with magnitude as small as 4.0. We applied this tool in the Northern Apennines and through this activity we have built up the Italian CMT dataset (Pondrelli et al., 2006) and the pattern of seismic deformation using the Kostrov (1974) method on a regular grid of 0.25 degree cells. We obtained a map of lateral variations of the pattern of seismic deformation on different layers of depth, taking into account the fact that shallow earthquakes (within 15 km of depth) in the region occur everywhere while most of events with a deeper hypocenter (15-40 km) occur only in the outer part of the belt, on the Adriatic side. For the analysis of the deep deformation, i.e. that occurred in the mantle, we used the anisotropy information characterizing the structure below the Northern Apennines. The anisotropy is an earth properties that in the crust is due to the presence of aligned fluid filled cracks or alternating isotropic layers with different elastic properties while in the mantle the most important cause of seismic anisotropy is the lattice preferred orientation (LPO) of the mantle minerals as the olivine. This last is a highly anisotropic mineral and tends to align its fast crystallographic axes (a-axis) parallel to the astenospheric flow as a response to finite strain induced by geodynamic processes. The seismic anisotropy pattern of a region is measured utilizing the shear wave splitting phenomenon (that is the seismological analogue to optical birefringence). Here, to do so, we apply on teleseismic earthquakes recorded on stations located in the study region, the Sileny and Plomerova (1996) approach. The results are analyzed on the basis of their lateral and vertical variations to better define the earth structure beneath Northern Apennines. We find different anisotropic domains, a Tuscany and an Adria one, with a pattern of seismic anisotropy which laterally varies in a similar way respect to the seismic deformation. Moreover, beneath the Adriatic region the distribution of the splitting parameters is so complex to request an appropriate analysis. Therefore we applied on our data the code of Menke and Levin (2003) which allows to look for different models of structures with multilayer anisotropy. We obtained that the structure beneath the Po Plain is probably even more complicated than expected. On the basis of the results obtained for this thesis, added with those from previous works, we suggest that slab roll-back, which created the Apennines and opened the Tyrrhenian Sea, evolved in the north boundary of Northern Apennines in a different way from its southern part. In particular, the trench retreat developed primarily south of our study region, with an eastward roll-back. In the northern portion of the orogen, after a first stage during which the retreat was perpendicular to the trench, it became oblique with respect to the structure.
Resumo:
The aim of this thesis was to describe the development of motion analysis protocols for applications on upper and lower limb extremities, by using inertial sensors-based systems. Inertial sensors-based systems are relatively recent. Knowledge and development of methods and algorithms for the use of such systems for clinical purposes is therefore limited if compared with stereophotogrammetry. However, their advantages in terms of low cost, portability, small size, are a valid reason to follow this direction. When developing motion analysis protocols based on inertial sensors, attention must be given to several aspects, like the accuracy of inertial sensors-based systems and their reliability. The need to develop specific algorithms/methods and software for using these systems for specific applications, is as much important as the development of motion analysis protocols based on them. For this reason, the goal of the 3-years research project described in this thesis was achieved first of all trying to correctly design the protocols based on inertial sensors, in terms of exploring and developing which features were suitable for the specific application of the protocols. The use of optoelectronic systems was necessary because they provided a gold standard and accurate measurement, which was used as a reference for the validation of the protocols based on inertial sensors. The protocols described in this thesis can be particularly helpful for rehabilitation centers in which the high cost of instrumentation or the limited working areas do not allow the use of stereophotogrammetry. Moreover, many applications requiring upper and lower limb motion analysis to be performed outside the laboratories will benefit from these protocols, for example performing gait analysis along the corridors. Out of the buildings, the condition of steady-state walking or the behavior of the prosthetic devices when encountering slopes or obstacles during walking can also be assessed. The application of inertial sensors on lower limb amputees presents conditions which are challenging for magnetometer-based systems, due to ferromagnetic material commonly adopted for the construction of idraulic components or motors. INAIL Prostheses Centre stimulated and, together with Xsens Technologies B.V. supported the development of additional methods for improving the accuracy of MTx in measuring the 3D kinematics for lower limb prostheses, with the results provided in this thesis. In the author’s opinion, this thesis and the motion analysis protocols based on inertial sensors here described, are a demonstration of how a strict collaboration between the industry, the clinical centers, the research laboratories, can improve the knowledge, exchange know-how, with the common goal to develop new application-oriented systems.
Resumo:
This dissertation analyzes the effect of market analysts’ expectations of share prices (price targets) on executive compensation. It examines how well the estimated effects of price targets on compensation fit with two competing views on determining executive compensation: the arm’s length bargaining model, which assumes that a board seeks to maximize shareholders’ interests, and the managerial power model, which assumes that a board seeks to maximize managers’ compensation (Bebchuk et al. 2005). The first chapter documents the pattern of CEO pay from fiscal year 1996 to 2010. The second chapter analyzes the Institutional Broker Estimate System Detail History Price Target data file, which that reports analysts’ price targets for firms. I show that the number of price target announcements is positively associated with company share price’s volatility, that price targets are predictive of changes in the value of stocks, and that when analysts announce positive (negative) expectations of future stock price, share prices change in the same direction in the short run. The third chapter analyzes the effect of price targets on executive compensation. I find that analysts' price targets alter the composition of executive pay between cash-based compensation and stock-based compensation. When analysts forecast a rise (fall) in the share price for a firm, the compensation package tilts toward stock-based (cash-based) compensation. The substitution effect is stronger in companies that have weaker corporate governance. The fourth chapter explores the effect of the introduction of the Sarbanes-Oxley Act (SOX) in 2002 and its reinforcement in 2006 on the options granting process. I show that the introduction of SOX and its reinforcement eliminated the practice of backdating options but increased “spring-loading” of option grants around price targets announcements. Overall, the dissertation shows that price targets provide insights into the determinants of executive pay in favor of the managerial power model.
Resumo:
The present work takes into account three posterior parietal areas, V6, V6A, and PEc, all operating on different subsets of signals (visual, somatic, motor). The work focuses on the study of their functional properties, to better understand their respective contribution in the neuronal circuits that make possible the interactions between subject and external environment. In the caudalmost pole of parietal lobe there is area V6. Functional data suggest that this area is related to the encoding of both objects motion and ego-motion. However, the sensitivity of V6 neurons to optic flow stimulations has been tested only in human fMRI experiments. Here we addressed this issue by applying on monkey the same experimental protocol used in human studies. The visual stimulation obtained with the Flow Fields stimulus was the most effective and powerful to activate area V6 in monkey, further strengthening this homology between the two primates. The neighboring areas, V6A and PEc, show different cytoarchitecture and connectivity profiles, but are both involved in the control of reaches. We studied the sensory responses present in these areas, and directly compared these.. We also studied the motor related discharges of PEc neurons during reaching movements in 3D space comparing also the direction and depth tuning of PEc cells with those of V6A. The results show that area PEc and V6A share several functional properties. Area PEc, unlike V6A, contains a richer and more complex somatosensory input, and a poorer, although complex visual one. Differences emerged also comparing the motor-related properties for reaches in depth: the incidence of depth modulations in PEc and the temporal pattern of modulation for depth and direction allow to delineate a trend among the two parietal visuomotor areas.