5 resultados para laser field
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The laser driven ion acceleration is a burgeoning field of resarch and is attracting a growing number of scientists since the first results reported in 2000 obtained irradiating thin solid foils by high power laser pulses. The growing interest is driven by the peculiar characteristics of the produced bunches, the compactness of the whole accelerating system and the very short accelerating length of this all-optical accelerators. A fervent theoretical and experimental work has been done since then. An important part of the theoretical study is done by means of numerical simulations and the most widely used technique exploits PIC codes (“Particle In Cell'”). In this thesis the PIC code AlaDyn, developed by our research group considering innovative algorithms, is described. My work has been devoted to the developement of the code and the investigation of the laser driven ion acceleration for different target configurations. Two target configurations for the proton acceleration are presented together with the results of the 2D and 3D numerical investigation. One target configuration consists of a solid foil with a low density layer attached on the irradiated side. The nearly critical plasma of the foam layer allows a very high energy absorption by the target and an increase of the proton energy up to a factor 3, when compared to the ``pure'' TNSA configuration. The differences of the regime with respect to the standard TNSA are described The case of nearly critical density targets has been investigated with 3D simulations. In this case the laser travels throughout the plasma and exits on the rear side. During the propagation, the laser drills a channel and induce a magnetic vortex that expanding on the rear side of the targer is source of a very intense electric field. The protons of the plasma are strongly accelerated up to energies of 100 MeV using a 200PW laser.
Resumo:
In the race to obtain protons with higher energies, using more compact systems at the same time, laser-driven plasma accelerators are becoming an interesting possibility. But for now, only beams with extremely broad energy spectra and high divergence have been produced. The driving line of this PhD thesis was the study and design of a compact system to extract a high quality beam out of the initial bunch of protons produced by the interaction of a laser pulse with a thin solid target, using experimentally reliable technologies in order to be able to test such a system as soon as possible. In this thesis, different transport lines are analyzed. The first is based on a high field pulsed solenoid, some collimators and, for perfect filtering and post-acceleration, a high field high frequency compact linear accelerator, originally designed to accelerate a 30 MeV beam extracted from a cyclotron. The second one is based on a quadruplet of permanent magnetic quadrupoles: thanks to its greater simplicity and reliability, it has great interest for experiments, but the effectiveness is lower than the one based on the solenoid; in fact, the final beam intensity drops by an order of magnitude. An additional sensible decrease in intensity is verified in the third case, where the energy selection is achieved using a chicane, because of its very low efficiency for off-axis protons. The proposed schemes have all been analyzed with 3D simulations and all the significant results are presented. Future experimental work based on the outcome of this thesis can be planned and is being discussed now.
Resumo:
Coastal sand dunes represent a richness first of all in terms of defense from the sea storms waves and the saltwater ingression; moreover these morphological elements constitute an unique ecosystem of transition between the sea and the land environment. The research about dune system is a strong part of the coastal sciences, since the last century. Nowadays this branch have assumed even more importance for two reasons: on one side the born of brand new technologies, especially related to the Remote Sensing, have increased the researcher possibilities; on the other side the intense urbanization of these days have strongly limited the dune possibilities of development and fragmented what was remaining from the last century. This is particularly true in the Ravenna area, where the industrialization united to the touristic economy and an intense subsidence, have left only few dune ridges residual still active. In this work three different foredune ridges, along the Ravenna coast, have been studied with Laser Scanner technology. This research didn’t limit to analyze volume or spatial difference, but try also to find new ways and new features to monitor this environment. Moreover the author planned a series of test to validate data from Terrestrial Laser Scanner (TLS), with the additional aim of finalize a methodology to test 3D survey accuracy. Data acquired by TLS were then applied on one hand to test some brand new applications, such as Digital Shore Line Analysis System (DSAS) and Computational Fluid Dynamics (CFD), to prove their efficacy in this field; on the other hand the author used TLS data to find any correlation with meteorological indexes (Forcing Factors), linked to sea and wind (Fryberger's method) applying statistical tools, such as the Principal Component Analysis (PCA).
Resumo:
Laser Shock Peening (LSP) is a surface enhancement treatment which induces a significant layer of beneficial compressive residual stresses up to several mm underneath the surface of metal components in order to improve the detrimental effects of crack growth behavior rate in it. The aim of this thesis is to predict the crack growth behavior of thin Aluminum specimens with one or more LSP stripes defining a compressive residual stress area. The LSP treatment has been applied as crack retardation stripes perpendicular to the crack growing direction, with the objective of slowing down the crack when approaching the LSP patterns. Different finite element approaches have been implemented to predict the residual stress field left by the laser treatment, mostly by means of the commercial software Abaqus/Explicit. The Afgrow software has been used to predict the crack growth behavior of the component following the laser peening treatment and to detect the improvement in fatigue life comparing to the specimen baseline. Furthermore, an analytical model has been implemented on the Matlab software to make more accurate predictions on fatigue life of the treated components. An educational internship at the Research and Technologies Germany- Hamburg department of Airbus helped to achieve knowledge and experience to write this thesis. The main tasks of the thesis are the following: -To up to date Literature Survey related to laser shock peening in metallic structures -To validate the FE models developed against experimental measurements at coupon level -To develop design of crack growth slow down in centered and edge cracked tension specimens based on residual stress engineering approach using laser peened patterns transversal to the crack path -To predict crack growth behavior of thin aluminum panels -To validate numerical and analytical results by means of experimental tests.
Resumo:
The PhD project that will be presented in this thesis is focused on the study and optimization of the production process for the manufacturing of electrical powertrain components in the automotive field using the laser beam welding process (LBW). The objective is to define, through experimental activities, an optimized process condition for applications in the electrical field that can be generalized, that is, which guarantees its reproducibility as the types of connections vary and which represents the basis for extending the method to future applications in e-mobility sector. The work developed along two lines of research, the convergence of which made it possible to create prototypes of battery modules based on different types of lithium-ion cells and stator windings for electric motors. On the one hand, the different welding configurations involving the production of batteries based on pouch cells and therefore the welding of aluminum and copper in dissimilar configuration were studied, while for the prismatic cells only one configuration was analyzed. On the other hand, the welding of pure copper hairpins with rectangular shape in edge joint configuration was studied for the production of stator windings. The experimental tests carried out have demonstrated the feasibility of using the LBW process for the production of electric powertrain components entirely designed and developed internally as the types of materials and welding configurations vary; the methodologies required for the characterization methods, necessary for the end-of-line tests, for the evaluation of the properties of the different joint configurations and components (battery and electric motor) were also defined with the aim of obtaining the best performance. The entire doctorate program was conducted in collaboration with Ferrari Auto S.p.A. and the direct industrial application of the issues addressed has been faced.