3 resultados para large deviation theory

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The discovery of the Cosmic Microwave Background (CMB) radiation in 1965 is one of the fundamental milestones supporting the Big Bang theory. The CMB is one of the most important source of information in cosmology. The excellent accuracy of the recent CMB data of WMAP and Planck satellites confirmed the validity of the standard cosmological model and set a new challenge for the data analysis processes and their interpretation. In this thesis we deal with several aspects and useful tools of the data analysis. We focus on their optimization in order to have a complete exploitation of the Planck data and contribute to the final published results. The issues investigated are: the change of coordinates of CMB maps using the HEALPix package, the problem of the aliasing effect in the generation of low resolution maps, the comparison of the Angular Power Spectrum (APS) extraction performances of the optimal QML method, implemented in the code called BolPol, and the pseudo-Cl method, implemented in Cromaster. The QML method has been then applied to the Planck data at large angular scales to extract the CMB APS. The same method has been applied also to analyze the TT parity and the Low Variance anomalies in the Planck maps, showing a consistent deviation from the standard cosmological model, the possible origins for this results have been discussed. The Cromaster code instead has been applied to the 408 MHz and 1.42 GHz surveys focusing on the analysis of the APS of selected regions of the synchrotron emission. The new generation of CMB experiments will be dedicated to polarization measurements, for which are necessary high accuracy devices for separating the polarizations. Here a new technology, called Photonic Crystals, is exploited to develop a new polarization splitter device and its performances are compared to the devices used nowadays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the thesis is to propose a Bayesian estimation through Markov chain Monte Carlo of multidimensional item response theory models for graded responses with complex structures and correlated traits. In particular, this work focuses on the multiunidimensional and the additive underlying latent structures, considering that the first one is widely used and represents a classical approach in multidimensional item response analysis, while the second one is able to reflect the complexity of real interactions between items and respondents. A simulation study is conducted to evaluate the parameter recovery for the proposed models under different conditions (sample size, test and subtest length, number of response categories, and correlation structure). The results show that the parameter recovery is particularly sensitive to the sample size, due to the model complexity and the high number of parameters to be estimated. For a sufficiently large sample size the parameters of the multiunidimensional and additive graded response models are well reproduced. The results are also affected by the trade-off between the number of items constituting the test and the number of item categories. An application of the proposed models on response data collected to investigate Romagna and San Marino residents' perceptions and attitudes towards the tourism industry is also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today we live in an age where the internet and artificial intelligence allow us to search for information through impressive amounts of data, opening up revolutionary new ways to make sense of reality and understand our world. However, it is still an area of improvement to exploit the full potential of large amounts of explainable information by distilling it automatically in an intuitive and user-centred explanation. For instance, different people (or artificial agents) may search for and request different types of information in a different order, so it is unlikely that a short explanation can suffice for all needs in the most generic case. Moreover, dumping a large portion of explainable information in a one-size-fits-all representation may also be sub-optimal, as the needed information may be scarce and dispersed across hundreds of pages. The aim of this work is to investigate how to automatically generate (user-centred) explanations from heterogeneous and large collections of data, with a focus on the concept of explanation in a broad sense, as a critical artefact for intelligence, regardless of whether it is human or robotic. Our approach builds on and extends Achinstein’s philosophical theory of explanations, where explaining is an illocutionary (i.e., broad but relevant) act of usefully answering questions. Specifically, we provide the theoretical foundations of Explanatory Artificial Intelligence (YAI), formally defining a user-centred explanatory tool and the space of all possible explanations, or explanatory space, generated by it. We present empirical results in support of our theory, showcasing the implementation of YAI tools and strategies for assessing explainability. To justify and evaluate the proposed theories and models, we considered case studies at the intersection of artificial intelligence and law, particularly European legislation. Our tools helped produce better explanations of software documentation and legal texts for humans and complex regulations for reinforcement learning agents.