6 resultados para land use intensity

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In genere, negli studi di vocazionalità delle colture, vengono presi in considerazione solo variabili ambientali pedo-climatiche. La coltivazione di una coltura comporta anche un impatto ambientale derivante dalle pratiche agronomiche ed il territorio può essere più o meno sensibile a questi impatti in base alla sua vulnerabilità. In questo studio si vuole sviluppare una metodologia per relazionare spazialmente l’impatto delle colture con le caratteristiche sito specifiche del territorio in modo da considerare anche questo aspetto nell’allocazione negli studi di vocazionalità. LCA è stato utilizzato per quantificare diversi impatti di alcune colture erbacee alimentari e da energia, relazionati a mappe di vulnerabilità costruite con l’utilizzo di GIS, attraverso il calcolo di coefficienti di rischio di allocazione per ogni combinazione coltura-area vulnerabile. Le colture energetiche sono state considerate come un uso alternativo del suolo per diminuire l’impatto ambientale. Il caso studio ha mostrato che l’allocazione delle colture può essere diversa in base al tipo e al numero di impatti considerati. Il risultato sono delle mappe in cui sono riportate le distribuzioni ottimali delle colture al fine di minimizzare gli impatti, rispetto a mais e grano, due colture alimentari importanti nell’area di studio. Le colture con l’impatto più alto dovrebbero essere coltivate nelle aree a vulnerabilità bassa, e viceversa. Se il rischio ambientale è la priorità, mais, colza, grano, girasole, e sorgo da fibra dovrebbero essere coltivate solo nelle aree a vulnerabilità bassa o moderata, mentre, le colture energetiche erbacee perenni, come il panico, potrebbero essere coltivate anche nelle aree a vulnerabilità alta, rappresentando cosi una opportunità per aumentare la sostenibilità di uso del suolo rurale. Lo strumento LCA-GIS inoltre, integrato con mappe di uso attuale del suolo, può aiutare a valutarne il suo grado di sostenibilità ambientale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Throughout the alpine domain, shallow landslides represent a serious geologic hazard, often causing severe damages to infrastructures, private properties, natural resources and in the most catastrophic events, threatening human lives. Landslides are a major factor of landscape evolution in mountainous and hilly regions and represent a critical issue for mountainous land management, since they cause loss of pastoral lands. In several alpine contexts, shallow landsliding distribution is strictly connected to the presence and condition of vegetation on the slopes. With the aid of high-resolution satellite images, it's possible to divide automatically the mountainous territory in land cover classes, which contribute with different magnitude to the stability of the slopes. The aim of this research is to combine EO (Earth Observation) land cover maps with ground-based measurements of the land cover properties. In order to achieve this goal, a new procedure has been developed to automatically detect grass mantle degradation patterns from satellite images. Moreover, innovative surveying techniques and instruments are tested to measure in situ the shear strength of grass mantle and the geomechanical and geotechnical properties of these alpine soils. Shallow landsliding distribution is assessed with the aid of physically based models, which use the EO-based map to distribute the resistance parameters across the landscape.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies on soil organic carbon (SOC) sequestration in perennial energy crops are available for North-Central Europe, while there is insufficient information for Southern Europe. This research was conducted in the Po Valley, a Mediterranean-temperate zone characterised by low SOC levels, due to intensive management. The aim was to assess the factors influencing SOC sequestration and its distribution through depth and within soil fractions, after a 9-year old conversion from two annual systems to Miscanthus (Miscanthus × giganteus) and giant reed (Arundo donax). The 13C natural abundance was used to evaluate the amount of SOC in annual and perennial species, and determine the percentage of carbon derived from perennial crops. SOC was significantly higher under perennial species, especially in the topsoil (0-0.15 m). After 9 years, the amount of C derived from Miscanthus was 18.7 Mg ha-1, mostly stored at 0-0.15 m, whereas the amount of C derived from giant reed was 34.7 Mg ha-1, evenly distributed through layers. Physical soil fractionation was combined with 13C abundance analysis. C derived from perennial crops was mainly found in macroaggregates. Under giant reed, more newly derived-carbon was stored in microaggregates and mineral fraction than under Miscanthus. A molecular approach based on denaturing gradient gel electrophoresis (DGGE) allowed to evaluate changes on microbial community, after the introduction of perennial crops. Functional aspects were investigated by determining relevant soil enzymes (β-glucosidase, urease, alkaline phosphatase). Perennial crops positively stimulated these enzymes, especially in the topsoil. DGGE profiles revealed that community richness was higher in perennial crops; Shannon index of diversity was influenced only by depth. In conclusion, Miscanthus and giant reed represent a sustainable choice for the recovery of soils exhausted by intensive management, also in Mediterranean conditions and this is relevant mainly because this geographical area is notoriously characterised by a rapid turnover of SOC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Landslide hazard and risk are growing as a consequence of climate change and demographic pressure. Landuse planning represents a powerful tool to manage this socio‐economic problem and build sustainable and landslide resilient communities. Landslide inventory maps are a cornerstone of landuse planning and, consequently, their quality assessment represents a burning issue. This work aimed to define the quality parameters of a landslide inventory and assess its spatial and temporal accuracy with regard to its possible applications to landuse planning. In this sense, I proceeded according to a two‐steps approach. An overall assessment of the accuracy of data geographic positioning was performed on four case study sites located in the Italian Northern Apennines. The quantification of the overall spatial and temporal accuracy, instead, focused on the Dorgola Valley (Province of Reggio Emilia). The assessment of spatial accuracy involved a comparison between remotely sensed and field survey data, as well as an innovative fuzzylike analysis of a multi‐temporal landslide inventory map. Conversely, long‐ and short‐term landslide temporal persistence was appraised over a period of 60 years with the aid of 18 remotely sensed image sets. These results were eventually compared with the current Territorial Plan for Provincial Coordination (PTCP) of the Province of Reggio Emilia. The outcome of this work suggested that geomorphologically detected and mapped landslides are a significant approximation of a more complex reality. In order to convey to the end‐users this intrinsic uncertainty, a new form of cartographic representation is needed. In this sense, a fuzzy raster landslide map may be an option. With regard to landuse planning, landslide inventory maps, if appropriately updated, confirmed to be essential decision‐support tools. This research, however, proved that their spatial and temporal uncertainty discourages any direct use as zoning maps, especially when zoning itself is associated to statutory or advisory regulations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The abandonment of less productive fields and agro-forest activities has occured in the last decades, interesting large mountain areas in all mediterranean basin. Until the fifties, agricultural practices dealt mainly with soil surface and surface runoff control systems. However, the apparent sustainability of soil use results often in contrast with historical documents, witnessing heavy hydrogeological instability, in naturally fragile areas. The research focused on the dynamics and effects of post-coltural land abandonment in a critical mountain area of the Reno River. The Reno River rappresents a typical Tuscan-Emilian Apennines Watershed where soil erosion occurs under very different conditions depending on interactions between land use, climate, geomorphology and lithology. Landslides are largely rappresented, due to the diffusion of clay hill slopes. Recent researches suggest that climatic variability will increase as a consequence of global climate change, resulting in greater frequency and intensity of extreme weather events, which could increase rates of erosion, landslides reactivations and diffusion of calanchive basins. As far as hill slopes are concerned, instability is today basically due to intrinsic factors, as the Apennine range is a rather young formation, in geological terms, and is mainly formed by sedimentary rocks with high occurrence of clays. Therefore landslides and rockfalls are very frequent, while surface soil erosion is generally low and anyway concentrated in the low Apennine, where intensive farming is still economically worth. The study, supported by GIS use, analyses the main fisical characteristics of the area and the historical changes of land use, and focalizes the dynamics of spontaneous reafforestation. Futhermore, the research studies the results of soil bioengineering and surface water control solutions for the restablishment of landslides occured in the last period. Infact soil bioengineering has been recently used in different situations in order to consolidate slopes and hillsides and prevent erosion; when applied, it gave good results, both in terms of engineering efficiency and vegetational development, expecially if combined with a good hydraulic control, thus proving to be an actual alternative to other techniques with heavier environmental impacts. Research into the specific site features and the use of proper plant species is vital to the success of bioengineering works.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Turfgrasses are ubiquitous in urban landscape and their role on carbon (C) cycle is increasing important also due to the considerable footprint related to their management practices. It is crucial to understand the mechanisms driving the C assimilation potential of these terrestrial ecosystems Several approaches have been proposed to assess C dynamics: micro-meteorological methods, small-chamber enclosure system (SC), chrono-sequence approach and various models. Natural and human-induced variables influence turfgrasses C fluxes. Species composition, environmental conditions, site characteristics, former land use and agronomic management are the most important factors considered in literature driving C sequestration potential. At the same time different approaches seem to influence C budget estimates. In order to study the effect of different management intensities on turfgrass, we estimated net ecosystem exchange (NEE) through a SC approach in a hole of a golf course in the province of Verona (Italy) for one year. The SC approach presented several advantages but also limits related to the measurement frequency, timing and duration overtime, and to the methodological errors connected to the measuring system. Daily CO2 fluxes changed according to the intensity of maintenance, likely due to different inputs and disturbances affecting biogeochemical cycles, combined also to the different leaf area index (LAI). The annual cumulative NEE decreased with the increase of the intensity of management. NEE was related to the seasonality of turfgrass, following temperatures and physiological activity. Generally on the growing season CO2 fluxes towards atmosphere exceeded C sequestered. The cumulative NEE showed a system near to a steady state for C dynamics. In the final part greenhouse gases (GHGs) emissions due to fossil fuel consumption for turfgrass upkeep were estimated, pinpointing that turfgrass may result a considerable C source. The C potential of trees and shrubs needs to be considered to obtain a complete budget.