14 resultados para land evaluate system
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In Bosnia Herzegovina the development of clear policy objectives and endorsement of a long-term, coherent and mutual agricultural and rural development policy have also been affected by structural problems: a lack of reliable information on population and other relevant issues, the absence of an adequate land registry system and cadastre. Moreover in BiH the agricultural and rural sectors are characterized by many factors that have typically affected transition countries such as land fragmentation, lack of agricultural mechanization and outdated production technologies, and rural aging, high unemployment and out-migration. In such a framework the condition and role of women in rural areas suffered for the lack of gender disaggregated data and a consequent poor information that lead to the exclusion of gender related questions in the agenda of public institutions and to the absence of targeted policy interventions. The aim of the research is to investigate the role and condition of women in the rural development process of Republic of Srpska and to analyze the capacity of extension services to stimulate their empowerment. Specific research questions include the status of women in the rural areas of Republic of Srpska, the role of government in fostering the empowerment of rural women, and the role of the extension service in supporting rural women. The methodology - inspired by the case study method developed by R. Yin - is designed along the three specific research questions that are used as building blocks. Each of the three research questions is investigated with a combination of methodological tools - including surveys, experts interviews and focus groups - aimed to overcome the lack of data and knowledge that characterize the research objectives.
Resumo:
This work is structured as follows: In Section 1 we discuss the clinical problem of heart failure. In particular, we present the phenomenon known as ventricular mechanical dyssynchrony: its impact on cardiac function, the therapy for its treatment and the methods for its quantification. Specifically, we describe the conductance catheter and its use for the measurement of dyssynchrony. At the end of the Section 1, we propose a new set of indexes to quantify the dyssynchrony that are studied and validated thereafter. In Section 2 we describe the studies carried out in this work: we report the experimental protocols, we present and discuss the results obtained. Finally, we report the overall conclusions drawn from this work and we try to envisage future works and possible clinical applications of our results. Ancillary studies that were carried out during this work mainly to investigate several aspects of cardiac resynchronization therapy (CRT) are mentioned in Appendix. -------- Ventricular mechanical dyssynchrony plays a regulating role already in normal physiology but is especially important in pathological conditions, such as hypertrophy, ischemia, infarction, or heart failure (Chapter 1,2.). Several prospective randomized controlled trials supported the clinical efficacy and safety of cardiac resynchronization therapy (CRT) in patients with moderate or severe heart failure and ventricular dyssynchrony. CRT resynchronizes ventricular contraction by simultaneous pacing of both left and right ventricle (biventricular pacing) (Chapter 1.). Currently, the conductance catheter method has been used extensively to assess global systolic and diastolic ventricular function and, more recently, the ability of this instrument to pick-up multiple segmental volume signals has been used to quantify mechanical ventricular dyssynchrony. Specifically, novel indexes based on volume signals acquired with the conductance catheter were introduced to quantify dyssynchrony (Chapter 3,4.). Present work was aimed to describe the characteristics of the conductancevolume signals, to investigate the performance of the indexes of ventricular dyssynchrony described in literature and to introduce and validate improved dyssynchrony indexes. Morevoer, using the conductance catheter method and the new indexes, the clinical problem of the ventricular pacing site optimization was addressed and the measurement protocol to adopt for hemodynamic tests on cardiac pacing was investigated. In accordance to the aims of the work, in addition to the classical time-domain parameters, a new set of indexes has been extracted, based on coherent averaging procedure and on spectral and cross-spectral analysis (Chapter 4.). Our analyses were carried out on patients with indications for electrophysiologic study or device implantation (Chapter 5.). For the first time, besides patients with heart failure, indexes of mechanical dyssynchrony based on conductance catheter were extracted and studied in a population of patients with preserved ventricular function, providing information on the normal range of such a kind of values. By performing a frequency domain analysis and by applying an optimized coherent averaging procedure (Chapter 6.a.), we were able to describe some characteristics of the conductance-volume signals (Chapter 6.b.). We unmasked the presence of considerable beat-to-beat variations in dyssynchrony that seemed more frequent in patients with ventricular dysfunction and to play a role in discriminating patients. These non-recurrent mechanical ventricular non-uniformities are probably the expression of the substantial beat-to-beat hemodynamic variations, often associated with heart failure and due to cardiopulmonary interaction and conduction disturbances. We investigated how the coherent averaging procedure may affect or refine the conductance based indexes; in addition, we proposed and tested a new set of indexes which quantify the non-periodic components of the volume signals. Using the new set of indexes we studied the acute effects of the CRT and the right ventricular pacing, in patients with heart failure and patients with preserved ventricular function. In the overall population we observed a correlation between the hemodynamic changes induced by the pacing and the indexes of dyssynchrony, and this may have practical implications for hemodynamic-guided device implantation. The optimal ventricular pacing site for patients with conventional indications for pacing remains controversial. The majority of them do not meet current clinical indications for CRT pacing. Thus, we carried out an analysis to compare the impact of several ventricular pacing sites on global and regional ventricular function and dyssynchrony (Chapter 6.c.). We observed that right ventricular pacing worsens cardiac function in patients with and without ventricular dysfunction unless the pacing site is optimized. CRT preserves left ventricular function in patients with normal ejection fraction and improves function in patients with poor ejection fraction despite no clinical indication for CRT. Moreover, the analysis of the results obtained using new indexes of regional dyssynchrony, suggests that pacing site may influence overall global ventricular function depending on its relative effects on regional function and synchrony. Another clinical problem that has been investigated in this work is the optimal right ventricular lead location for CRT (Chapter 6.d.). Similarly to the previous analysis, using novel parameters describing local synchrony and efficiency, we tested the hypothesis and we demonstrated that biventricular pacing with alternative right ventricular pacing sites produces acute improvement of ventricular systolic function and improves mechanical synchrony when compared to standard right ventricular pacing. Although no specific right ventricular location was shown to be superior during CRT, the right ventricular pacing site that produced the optimal acute hemodynamic response varied between patients. Acute hemodynamic effects of cardiac pacing are conventionally evaluated after stabilization episodes. The applied duration of stabilization periods in most cardiac pacing studies varied considerably. With an ad hoc protocol (Chapter 6.e.) and indexes of mechanical dyssynchrony derived by conductance catheter we demonstrated that the usage of stabilization periods during evaluation of cardiac pacing may mask early changes in systolic and diastolic intra-ventricular dyssynchrony. In fact, at the onset of ventricular pacing, the main dyssynchrony and ventricular performance changes occur within a 10s time span, initiated by the changes in ventricular mechanical dyssynchrony induced by aberrant conduction and followed by a partial or even complete recovery. It was already demonstrated in normal animals that ventricular mechanical dyssynchrony may act as a physiologic modulator of cardiac performance together with heart rate, contractile state, preload and afterload. The present observation, which shows the compensatory mechanism of mechanical dyssynchrony, suggests that ventricular dyssynchrony may be regarded as an intrinsic cardiac property, with baseline dyssynchrony at increased level in heart failure patients. To make available an independent system for cardiac output estimation, in order to confirm the results obtained with conductance volume method, we developed and validated a novel technique to apply the Modelflow method (a method that derives an aortic flow waveform from arterial pressure by simulation of a non-linear three-element aortic input impedance model, Wesseling et al. 1993) to the left ventricular pressure signal, instead of the arterial pressure used in the classical approach (Chapter 7.). The results confirmed that in patients without valve abnormalities, undergoing conductance catheter evaluations, the continuous monitoring of cardiac output using the intra-ventricular pressure signal is reliable. Thus, cardiac output can be monitored quantitatively and continuously with a simple and low-cost method. During this work, additional studies were carried out to investigate several areas of uncertainty of CRT. The results of these studies are briefly presented in Appendix: the long-term survival in patients treated with CRT in clinical practice, the effects of CRT in patients with mild symptoms of heart failure and in very old patients, the limited thoracotomy as a second choice alternative to transvenous implant for CRT delivery, the evolution and prognostic significance of diastolic filling pattern in CRT, the selection of candidates to CRT with echocardiographic criteria and the prediction of response to the therapy.
Resumo:
The main problem connected to cone beam computed tomography (CT) systems for industrial applications employing 450 kV X-ray tubes is the high amount of scattered radiation which is added to the primary radiation (signal). This stray radiation leads to a significant degradation of the image quality. A better understanding of the scattering and methods to reduce its effects are therefore necessary to improve the image quality. Several studies have been carried out in the medical field at lower energies, whereas studies in industrial CT, especially for energies up to 450 kV, are lacking. Moreover, the studies reported in literature do not consider the scattered radiation generated by the CT system structure and the walls of the X-ray room (environmental scatter). In order to investigate the scattering on CT projections a GEANT4-based Monte Carlo (MC) model was developed. The model, which has been validated against experimental data, has enabled the calculation of the scattering including the environmental scatter, the optimization of an anti-scatter grid suitable for the CT system, and the optimization of the hardware components of the CT system. The investigation of multiple scattering in the CT projections showed that its contribution is 2.3 times the one of primary radiation for certain objects. The results of the environmental scatter showed that it is the major component of the scattering for aluminum box objects of front size 70 x 70 mm2 and that it strongly depends on the thickness of the object and therefore on the projection. For that reason, its correction is one of the key factors for achieving high quality images. The anti-scatter grid optimized by means of the developed MC model was found to reduce the scatter-toprimary ratio in the reconstructed images by 20 %. The object and environmental scatter calculated by means of the simulation were used to improve the scatter correction algorithm which could be patented by Empa. The results showed that the cupping effect in the corrected image is strongly reduced. The developed CT simulation is a powerful tool to optimize the design of the CT system and to evaluate the contribution of the scattered radiation to the image. Besides, it has offered a basis for a new scatter correction approach by which it has been possible to achieve images with the same spatial resolution as state-of-the-art well collimated fan-beam CT with a gain in the reconstruction time of a factor 10. This result has a high economic impact in non-destructive testing and evaluation, and reverse engineering.
Resumo:
During the last few years, several methods have been proposed in order to study and to evaluate characteristic properties of the human skin by using non-invasive approaches. Mostly, these methods cover aspects related to either dermatology, to analyze skin physiology and to evaluate the effectiveness of medical treatments in skin diseases, or dermocosmetics and cosmetic science to evaluate, for example, the effectiveness of anti-aging treatments. To these purposes a routine approach must be followed. Although very accurate and high resolution measurements can be achieved by using conventional methods, such as optical or mechanical profilometry for example, their use is quite limited primarily to the high cost of the instrumentation required, which in turn is usually cumbersome, highlighting some of the limitations for a routine based analysis. This thesis aims to investigate the feasibility of a noninvasive skin characterization system based on the analysis of capacitive images of the skin surface. The system relies on a CMOS portable capacitive device which gives 50 micron/pixel resolution capacitance map of the skin micro-relief. In order to extract characteristic features of the skin topography, image analysis techniques, such as watershed segmentation and wavelet analysis, have been used to detect the main structures of interest: wrinkles and plateau of the typical micro-relief pattern. In order to validate the method, the features extracted from a dataset of skin capacitive images acquired during dermatological examinations of a healthy group of volunteers have been compared with the age of the subjects involved, showing good correlation with the skin ageing effect. Detailed analysis of the output of the capacitive sensor compared with optical profilometry of silicone replica of the same skin area has revealed potentiality and some limitations of this technology. Also, applications to follow-up studies, as needed to objectively evaluate the effectiveness of treatments in a routine manner, are discussed.
Resumo:
This research activity studied how the uncertainties are concerned and interrelated through the multi-model approach, since it seems to be the bigger challenge of ocean and weather forecasting. Moreover, we tried to reduce model error throughout the superensemble approach. In order to provide this aim, we created different dataset and by means of proper algorithms we obtained the superensamble estimate. We studied the sensitivity of this algorithm in function of its characteristics parameters. Clearly, it is not possible to evaluate a reasonable estimation of the error neglecting the importance of the grid size of ocean model, for the large amount of all the sub grid-phenomena embedded in space discretizations that can be only roughly parametrized instead of an explicit evaluation. For this reason we also developed a high resolution model, in order to calculate for the first time the impact of grid resolution on model error.
Resumo:
We use data from about 700 GPS stations in the EuroMediterranen region to investigate the present-day behavior of the the Calabrian subduction zone within the Mediterranean-scale plates kinematics and to perform local scale studies about the strain accumulation on active structures. We focus attenction on the Messina Straits and Crati Valley faults where GPS data show extentional velocity gradients of ∼3 mm/yr and ∼2 mm/yr, respectively. We use dislocation model and a non-linear constrained optimization algorithm to invert for fault geometric parameters and slip-rates and evaluate the associated uncertainties adopting a bootstrap approach. Our analysis suggest the presence of two partially locked normal faults. To investigate the impact of elastic strain contributes from other nearby active faults onto the observed velocity gradient we use a block modeling approach. Our models show that the inferred slip-rates on the two analyzed structures are strongly impacted by the assumed locking width of the Calabrian subduction thrust. In order to frame the observed local deformation features within the present- day central Mediterranean kinematics we realyze a statistical analysis testing the indipendent motion (w.r.t. the African and Eurasias plates) of the Adriatic, Cal- abrian and Sicilian blocks. Our preferred model confirms a microplate like behaviour for all the investigated blocks. Within these kinematic boundary conditions we fur- ther investigate the Calabrian Slab interface geometry using a combined approach of block modeling and χ2ν statistic. Almost no information is obtained using only the horizontal GPS velocities that prove to be a not sufficient dataset for a multi-parametric inversion approach. Trying to stronger constrain the slab geometry we estimate the predicted vertical velocities performing suites of forward models of elastic dislocations varying the fault locking depth. Comparison with the observed field suggest a maximum resolved locking depth of 25 km.
Resumo:
This thesis is concerned with the role played by software tools in the analysis and dissemination of linguistic corpora and their contribution to a more widespread adoption of corpora in different fields. Chapter 1 contains an overview of some of the most relevant corpus analysis tools available today, presenting their most interesting features and some of their drawbacks. Chapter 2 begins with an explanation of the reasons why none of the available tools appear to satisfy the requirements of the user community and then continues with technical overview of the current status of the new system developed as part of this work. This presentation is followed by highlights of features that make the system appealing to users and corpus builders (i.e. scholars willing to make their corpora available to the public). The chapter concludes with an indication of future directions for the projects and information on the current availability of the software. Chapter 3 describes the design of an experiment devised to evaluate the usability of the new system in comparison to another corpus tool. Usage of the tool was tested in the context of a documentation task performed on a real assignment during a translation class in a master's degree course. In chapter 4 the findings of the experiment are presented on two levels of analysis: firstly a discussion on how participants interacted with and evaluated the two corpus tools in terms of interface and interaction design, usability and perceived ease of use. Then an analysis follows of how users interacted with corpora to complete the task and what kind of queries they submitted. Finally, some general conclusions are drawn and areas for future work are outlined.
Resumo:
Photovoltaic (PV) solar panels generally produce electricity in the 6% to 16% efficiency range, the rest being dissipated in thermal losses. To recover this amount, hybrid photovoltaic thermal systems (PVT) have been devised. These are devices that simultaneously convert solar energy into electricity and heat. It is thus interesting to study the PVT system globally from different point of views in order to evaluate advantages and disadvantages of this technology and its possible uses. In particular in Chapter II, the development of the PVT absorber numerical optimization by a genetic algorithm has been carried out analyzing different internal channel profiles in order to find a right compromise between performance and technical and economical feasibility. Therefore in Chapter III ,thanks to a mobile structure built into the university lab, it has been compared experimentally electrical and thermal output power from PVT panels with separated photovoltaic and solar thermal productions. Collecting a lot of experimental data based on different seasonal conditions (ambient temperature,irradiation, wind...),the aim of this mobile structure has been to evaluate average both thermal and electrical increasing and decreasing efficiency values obtained respect to separate productions through the year. In Chapter IV , new PVT and solar thermal equation based models in steady state conditions have been developed by software Dymola that uses Modelica language. This permits ,in a simplified way respect to previous system modelling softwares, to model and evaluate different concepts about PVT panel regarding its structure before prototyping and measuring it. Chapter V concerns instead the definition of PVT boundary conditions into a HVAC system . This was made trough year simulations by software Polysun in order to finally assess the best solar assisted integrated structure thanks to F_save(solar saving energy)factor. Finally, Chapter VI presents the conclusion and the perspectives of this PhD work.
Resumo:
The thesis analyze a subject of renewed interest in bioengineering, the research and analysis of exercise parameters that maximize the neuromuscular and cardiovascular involvement in vibration treatment. The research activity was inspired by the increasing use of device able to provide localized or whole body vibration (WBV). In particular, the focus was placed on the vibrating platform and the effect that the vibrations have on the neuromuscular system and cardiovascular system. The aim of the thesis is to evaluate the effectiveness and efficiency of vibration applied to the entire body, in particular, it was investigated the effect of WBV on: 1) Oxygen consumption during static and dynamic squat; 2) Resonant frequency of the muscle groups of the lower limbs; 3) Oxygen consumption and electromyographic signals during static and dynamic squat. In the first three chapters are explained the state of the art concerning vibration treatments, the effects of vibration applied to the entire body, with the explanation of the basic mechanisms (Tonic Vibration Reflex, TVR) and the neuromuscular system, with particular attention to the skeletal muscles and the stretch reflex. In the fourth chapter is illustrated the set-up used for the experiments and the software, implemented in LabWindows in order to control the platform and acquire the electromyographic signal. In the fifth chapter were exposed experiments undertaken during the PhD years. In particular, the analysis of Whole Body Vibration effect on neurological and cardiovascular systems showed interesting results. The results indicate that the static squat with WBV produced higher neuromuscular and cardiorespiratory system activation for exercise duration <60 sec. Otherwise, if the single bout duration was higher than 60 sec, the greater cardiorespiratory system activation was achieved during the dynamic squat with WBV while higher neuromuscular activation was still obtained with the static exercise.
Resumo:
Restoring a correct implant kinematics and providing a good ligament balance and patellar tracking is mandatory to improve clinical and functional outcome after a Total Knee Replacement. Surgical navigation systems are a reliable and accurate tool to help the surgeon in achieving these goals. The aim of the present study was to use navigation system with an intra-operative surgical protocol to evaluate and determine an optimal implant kinematics during a Total Knee Replacement.
Resumo:
In this thesis we focus on optimization and simulation techniques applied to solve strategic, tactical and operational problems rising in the healthcare sector. At first we present three applications to Emilia-Romagna Public Health System (SSR) developed in collaboration with Agenzia Sanitaria e Sociale dell'Emilia-Romagna (ASSR), a regional center for innovation and improvement in health. Agenzia launched a strategic campaign aimed at introducing Operations Research techniques as decision making tools to support technological and organizational innovations. The three applications focus on forecast and fund allocation of medical specialty positions, breast screening program extension and operating theater planning. The case studies exploit the potential of combinatorial optimization, discrete event simulation and system dynamics techniques to solve resource constrained problem arising within Emilia-Romagna territory. We then present an application in collaboration with Dipartimento di Epidemiologia del Lazio that focuses on population demand of service allocation to regional emergency departments. Finally, a simulation-optimization approach, developed in collaboration with INESC TECH center of Porto, to evaluate matching policies for the kidney exchange problem is discussed.
Resumo:
Studies on soil organic carbon (SOC) sequestration in perennial energy crops are available for North-Central Europe, while there is insufficient information for Southern Europe. This research was conducted in the Po Valley, a Mediterranean-temperate zone characterised by low SOC levels, due to intensive management. The aim was to assess the factors influencing SOC sequestration and its distribution through depth and within soil fractions, after a 9-year old conversion from two annual systems to Miscanthus (Miscanthus × giganteus) and giant reed (Arundo donax). The 13C natural abundance was used to evaluate the amount of SOC in annual and perennial species, and determine the percentage of carbon derived from perennial crops. SOC was significantly higher under perennial species, especially in the topsoil (0-0.15 m). After 9 years, the amount of C derived from Miscanthus was 18.7 Mg ha-1, mostly stored at 0-0.15 m, whereas the amount of C derived from giant reed was 34.7 Mg ha-1, evenly distributed through layers. Physical soil fractionation was combined with 13C abundance analysis. C derived from perennial crops was mainly found in macroaggregates. Under giant reed, more newly derived-carbon was stored in microaggregates and mineral fraction than under Miscanthus. A molecular approach based on denaturing gradient gel electrophoresis (DGGE) allowed to evaluate changes on microbial community, after the introduction of perennial crops. Functional aspects were investigated by determining relevant soil enzymes (β-glucosidase, urease, alkaline phosphatase). Perennial crops positively stimulated these enzymes, especially in the topsoil. DGGE profiles revealed that community richness was higher in perennial crops; Shannon index of diversity was influenced only by depth. In conclusion, Miscanthus and giant reed represent a sustainable choice for the recovery of soils exhausted by intensive management, also in Mediterranean conditions and this is relevant mainly because this geographical area is notoriously characterised by a rapid turnover of SOC.
Resumo:
The CAP reform process has been a central issue for agricultural economics research in recent years, and is gaining further attention in view of the post-2013 perspectives (Viaggi et al., 2010; Bartolini et al., 2011). Today the CAP is in the middle of a new reform process. Through the debate generated by the official proposals, published in October 2011 (COM(2011)625/3), the European Union (EU) engaged in a revision of the CAP ended on 26 June 2013 when a political agreement has been reached (IP/13/613, MEMO-13-621 and IP/13/864). In particular, in Italy the switch of the payment regime from historical to regional bases will take place. The underlying assumption is that the shift to regionalized payments changes the remuneration of inputs and has an impact on farmers’ allocation of fixed resources. In this context, farmers are expected to adjust their plans to the new policy environment as the regionalization of support is meant to create a change in incentives faced by farmers. The objective of this thesis is to provide an ex-ante analysis of the potential impact of the introduction of regionalized payments, within the post-2013 CAP reform, on the land market. Regionalized payments seem to produce differentiated effects and contribute to a general (slight) increase of land exchanges. The individual reaction to the new payments introduction would be different depending on location and specialization. These effects seem to be also strongly influenced by the difference in historical payments endowment and value, i.e. by the previous historical system of distribution of payments.
Resumo:
Coastal flooding poses serious threats to coastal areas around the world, billions of dollars in damage to property and infrastructure, and threatens the lives of millions of people. Therefore, disaster management and risk assessment aims at detecting vulnerability and capacities in order to reduce coastal flood disaster risk. In particular, non-specialized researchers, emergency management personnel, and land use planners require an accurate, inexpensive method to determine and map risk associated with storm surge events and long-term sea level rise associated with climate change. This study contributes to the spatially evaluation and mapping of social-economic-environmental vulnerability and risk at sub-national scale through the development of appropriate tools and methods successfully embedded in a Web-GIS Decision Support System. A new set of raster-based models were studied and developed in order to be easily implemented in the Web-GIS framework with the purpose to quickly assess and map flood hazards characteristics, damage and vulnerability in a Multi-criteria approach. The Web-GIS DSS is developed recurring to open source software and programming language and its main peculiarity is to be available and usable by coastal managers and land use planners without requiring high scientific background in hydraulic engineering. The effectiveness of the system in the coastal risk assessment is evaluated trough its application to a real case study.