11 resultados para ionic liq reconstituted cellulose composite solid support matrix transparency
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Nell’ambito del progetto multidisciplinare “Coastal Salt Water Intrusion”, che si propone di indagare “l’Intrusione salina nella costa ravennate con i conseguenti impatti territoriali-ambientali, connessi al previsto innalzamento del livello marino per cause climatiche e di subsidenza”, si inserisce il presente studio con l’obiettivo di fornire una caratterizzazione idrogeochimica delle acque di falda e superficiali e un modello geochimico generale sui processi di salinizzazione o desalinizzazione in atto nella falda freatica costiera della costa ravennate. E’ stato fatto un confronto fra tre metodiche di estrazione del complesso di scambio della matrice solida dell’acquifero che utilizzano rispettivamente acetato di ammonio, cloruro di bario e argento-tiourea. Sono stati posizionati 5 transetti perpendicolari alla linea di costa per un totale di 44 punti di campionamento con due campagne di prelievi, al termine della primavera e al termine dell’estate. La caratterizzazione dei processi di mixing e scambio ionico con la matrice solida dell’acquifero è avvenuta mediante analisi dei cationi ed anioni fondamentali, determinazione della CEC sulla matrice solida dell’acquifero, modellizzazione mixing/scambio ionico, modellizzazione della composizione teorica della frazione scambiabile in funzione della composizione acqua all’equilibrio e interpolazione geostatistica dei dati raccolti e costruzione di mappe geochimiche (curve di iso-concentrazione). La metodologia di estrazione che utilizza il bario-cloruro è risultata la più affidabile. Le acque prelevate dalla falda superficiale evidenziano miscelazione in varie proporzioni acqua marina/acqua dolce, scambi ionici per interazione acqua/sedimento, dissoluzione di CaSO4.2H2O. I processi di salinizzazione e/o addolcimento mostrano una significativa variabilità nello spazio (variabilità legata alla distanza dalla costa, al profilo topografico e alla distribuzione dei corpi sabbiosi litoranei) e nel tempo (variabilità legata alla piovosità e alla gestione delle acque superficiali e del sottosuolo). La complessa variabilità spazio-temporale dei processi in atto nella falda superficiale non consente di evidenziare una complessiva prevalenza di fenomeni di salinizzazione rispetto a quelli di addolcimento.
Resumo:
Este estudo investiga a otimização da resistência ao cisalhamento no plano de juntas de sobreposição co-curadas do compósito termoplástico unidirecional auto-reforçado de polietileno de baixa densidade reciclado reforçado por fibras de polietileno de ultra alto peso molecular através da relação desta resistência com os parâmetros processuais de prensagem a quente para a conformação da junta (pressão, temperatura, tempo e comprimento). A matriz teve sua estrutura química analisada para verificar potenciais degradações devidas à sua origem de reciclagem. Matriz e reforço foram caracterizados termicamente para definir a janela de temperatura de processamento de junta a ser estudada. A elaboração das condições de cura dos corpos de prova foi feita de acordo com a metodologia de Projeto de Experimento de Superfície de Resposta e a relação entre a resistência ao cisalhamento das juntas e os respectivos parâmetros de cura foi obtida através de equação de regressão gerada pelo método dos Mínimos Quadrados Ordinários. A caracterização mecânica em tração do material foi analisada micro e macromecanicamente. A análise química da matriz não demonstrou a presença de grupos carboxílicos que evidenciassem degradação por ramificações de cadeia e reticulação advindos da reciclagem do material. As metodologias de ensaio propostas demonstraram ser eficazes, podendo servir como base para a constituição de normas técnicas. Demonstrou-se que é possível obter juntas com resistência ótima ao cisalhamento de 6,88 MPa quando processadas a 1 bar, 115°C, 5 min e com 12 mm. A análise da fratura revelou que a ruptura por cisalhamento das juntas foi precedida por múltiplas fissuras longitudinais induzidas por sucessivos debondings, tanto dentro quanto fora da junta, devido à tensão transversal acumulada na mesma, proporcional a seu comprimento. A temperatura demonstrou ser o parâmetro de processamento mais relevante para a performance da junta, a qual é pouco afetada por variações na pressão e tempo de cura.
Resumo:
This research deals with the deepening and use of an environmental accounting matrix in Emilia-Romagna, RAMEA air emissions (regional NAMEA), carried out by the Regional Environment Agency (Arpa) in an European project. After a depiction of the international context regarding the widespread needing to integrate economic indicators and go beyond conventional reporting system, this study explains the structure, update and development of the tool. The overall aim is to outline the matrix for environmental assessments of regional plans, draw up sustainable reports and monitor effects of regional policies in a sustainable development perspective. The work focused on an application of a Shift-Share model, on the integration with eco-taxes, industrial waste production, energy consumptions, on applications of the extended RAMEA as a policy tool, following Eurostat guidelines. The common thread is the eco-efficiency (economic-environmental efficiency) index. The first part, in English, treats the methodology used to build a more complete tool; in the second part RAMEA has been applied on two regional case studies, in Italian, to support decision makers regarding Strategic Environmental Assessments’ processes (2001/42/EC). The aim is to support an evidence-based policy making by integrating sustainable development concerns at all levels. The first case study regards integrated environmental-economic analyses in support to the SEA of the Regional Waste management plan. For the industrial waste production an extended and updated RAMEA has been developed as a useful policy tool, to help in analysing and monitoring the state of environmental-economic performances. The second case study deals with the environmental report for the SEA of the Regional Program concerning productive activities. RAMEA has been applied aiming to an integrated environmental-economic analysis of the context, to investigate the performances of the regional production chains and to depict and monitor the area where the program should be carried out, from an integrated environmental-economic perspective.
Resumo:
Abstract. This thesis presents a discussion on a few specific topics regarding the low velocity impact behaviour of laminated composites. These topics were chosen because of their significance as well as the relatively limited attention received so far by the scientific community. The first issue considered is the comparison between the effects induced by a low velocity impact and by a quasi-static indentation experimental test. An analysis of both test conditions is presented, based on the results of experiments carried out on carbon fibre laminates and on numerical computations by a finite element model. It is shown that both quasi-static and dynamic tests led to qualitatively similar failure patterns; three characteristic contact force thresholds, corresponding to the main steps of damage progression, were identified and found to be equal for impact and indentation. On the other hand, an equal energy absorption resulted in a larger delaminated area in quasi-static than in dynamic tests, while the maximum displacement of the impactor (or indentor) was higher in the case of impact, suggesting a probably more severe fibre damage than in indentation. Secondly, the effect of different specimen dimensions and boundary conditions on its impact response was examined. Experimental testing showed that the relationships of delaminated area with two significant impact parameters, the absorbed energy and the maximum contact force, did not depend on the in-plane dimensions and on the support condition of the coupons. The possibility of predicting, by means of a simplified numerical computation, the occurrence of delaminations during a specific impact event is also discussed. A study about the compressive behaviour of impact damaged laminates is also presented. Unlike most of the contributions available about this subject, the results of compression after impact tests on thin laminates are described in which the global specimen buckling was not prevented. Two different quasi-isotropic stacking sequences, as well as two specimen geometries, were considered. It is shown that in the case of rectangular coupons the lay-up can significantly affect the damage induced by impact. Different buckling shapes were observed in laminates with different stacking sequences, in agreement with the results of numerical analysis. In addition, the experiments showed that impact damage can alter the buckling mode of the laminates in certain situations, whereas it did not affect the compressive strength in every case, depending on the buckling shape. Some considerations about the significance of the test method employed are also proposed. Finally, a comprehensive study is presented regarding the influence of pre-existing in-plane loads on the impact response of laminates. Impact events in several conditions, including both tensile and compressive preloads, both uniaxial and biaxial, were analysed by means of numerical finite element simulations; the case of laminates impacted in postbuckling conditions was also considered. The study focused on how the effect of preload varies with the span-to-thickness ratio of the specimen, which was found to be a key parameter. It is shown that a tensile preload has the strongest effect on the peak stresses at low span-to-thickness ratios, leading to a reduction of the minimum impact energy required to initiate damage, whereas this effect tends to disappear as the span-to-thickness ratio increases. On the other hand, a compression preload exhibits the most detrimental effects at medium span-to-thickness ratios, at which the laminate compressive strength and the critical instability load are close to each other, while the influence of preload can be negligible for thin plates or even beneficial for very thick plates. The possibility to obtain a better explanation of the experimental results described in the literature, in view of the present findings, is highlighted. Throughout the thesis the capabilities and limitations of the finite element model, which was implemented in an in-house program, are discussed. The program did not include any damage model of the material. It is shown that, although this kind of analysis can yield accurate results as long as damage has little effect on the overall mechanical properties of a laminate, it can be helpful in explaining some phenomena and also in distinguishing between what can be modelled without taking into account the material degradation and what requires an appropriate simulation of damage. Sommario. Questa tesi presenta una discussione su alcune tematiche specifiche riguardanti il comportamento dei compositi laminati soggetti ad impatto a bassa velocità. Tali tematiche sono state scelte per la loro importanza, oltre che per l’attenzione relativamente limitata ricevuta finora dalla comunità scientifica. La prima delle problematiche considerate è il confronto fra gli effetti prodotti da una prova sperimentale di impatto a bassa velocità e da una prova di indentazione quasi statica. Viene presentata un’analisi di entrambe le condizioni di prova, basata sui risultati di esperimenti condotti su laminati in fibra di carbonio e su calcoli numerici svolti con un modello ad elementi finiti. È mostrato che sia le prove quasi statiche sia quelle dinamiche portano a un danneggiamento con caratteristiche qualitativamente simili; tre valori di soglia caratteristici della forza di contatto, corrispondenti alle fasi principali di progressione del danno, sono stati individuati e stimati uguali per impatto e indentazione. D’altro canto lo stesso assorbimento di energia ha portato ad un’area delaminata maggiore nelle prove statiche rispetto a quelle dinamiche, mentre il massimo spostamento dell’impattatore (o indentatore) è risultato maggiore nel caso dell’impatto, indicando la probabilità di un danneggiamento delle fibre più severo rispetto al caso dell’indentazione. In secondo luogo è stato esaminato l’effetto di diverse dimensioni del provino e diverse condizioni al contorno sulla sua risposta all’impatto. Le prove sperimentali hanno mostrato che le relazioni fra l’area delaminata e due parametri di impatto significativi, l’energia assorbita e la massima forza di contatto, non dipendono dalle dimensioni nel piano dei provini e dalle loro condizioni di supporto. Viene anche discussa la possibilità di prevedere, per mezzo di un calcolo numerico semplificato, il verificarsi di delaminazioni durante un determinato caso di impatto. È presentato anche uno studio sul comportamento a compressione di laminati danneggiati da impatto. Diversamente della maggior parte della letteratura disponibile su questo argomento, vengono qui descritti i risultati di prove di compressione dopo impatto su laminati sottili durante le quali l’instabilità elastica globale dei provini non è stata impedita. Sono state considerate due differenti sequenze di laminazione quasi isotrope, oltre a due geometrie per i provini. Viene mostrato come nel caso di provini rettangolari la sequenza di laminazione possa influenzare sensibilmente il danno prodotto dall’impatto. Due diversi tipi di deformate in condizioni di instabilità sono stati osservati per laminati con diversa laminazione, in accordo con i risultati dell’analisi numerica. Gli esperimenti hanno mostrato inoltre che in certe situazioni il danno da impatto può alterare la deformata che il laminato assume in seguito ad instabilità; d’altra parte tale danno non ha sempre influenzato la resistenza a compressione, a seconda della deformata. Vengono proposte anche alcune considerazioni sulla significatività del metodo di prova utilizzato. Infine viene presentato uno studio esaustivo riguardo all’influenza di carichi membranali preesistenti sulla risposta all’impatto dei laminati. Sono stati analizzati con simulazioni numeriche ad elementi finiti casi di impatto in diverse condizioni di precarico, sia di trazione sia di compressione, sia monoassiali sia biassiali; è stato preso in considerazione anche il caso di laminati impattati in condizioni di postbuckling. Lo studio si è concentrato in particolare sulla dipendenza degli effetti del precarico dal rapporto larghezza-spessore del provino, che si è rivelato un parametro fondamentale. Viene illustrato che un precarico di trazione ha l’effetto più marcato sulle massime tensioni per bassi rapporti larghezza-spessore, portando ad una riduzione della minima energia di impatto necessaria per innescare il danneggiamento, mentre questo effetto tende a scomparire all’aumentare di tale rapporto. Il precarico di compressione evidenzia invece gli effetti più deleteri a rapporti larghezza-spessore intermedi, ai quali la resistenza a compressione del laminato e il suo carico critico di instabilità sono paragonabili, mentre l’influenza del precarico può essere trascurabile per piastre sottili o addirittura benefica per piastre molto spesse. Viene evidenziata la possibilità di trovare una spiegazione più soddisfacente dei risultati sperimentali riportati in letteratura, alla luce del presente contributo. Nel corso della tesi vengono anche discussi le potenzialità ed i limiti del modello ad elementi finiti utilizzato, che è stato implementato in un programma scritto in proprio. Il programma non comprende alcuna modellazione del danneggiamento del materiale. Viene però spiegato come, nonostante questo tipo di analisi possa portare a risultati accurati soltanto finché il danno ha scarsi effetti sulle proprietà meccaniche d’insieme del laminato, esso possa essere utile per spiegare alcuni fenomeni, oltre che per distinguere fra ciò che si può riprodurre senza tenere conto del degrado del materiale e ciò che invece richiede una simulazione adeguata del danneggiamento.
Resumo:
The work of this thesis has been focused on the characterization of metallic membranes for the hydrogen purification from steam reforming process and also of perfluorosulphonic acid ionomeric (PFSI) membranes suitable as electrolytes in fuel cell applications. The experimental study of metallic membranes was divided in three sections: synthesis of palladium and silver palladium coatings on porous ceramic support via electroless deposition (ELD), solubility and diffusivity analysis of hydrogen in palladium based alloys (temperature range between 200 and 400 °C up to 12 bar of pressure) and permeation experiments of pure hydrogen and mixtures containing, besides hydrogen, also nitrogen and methane at high temperatures (up to 600 °C) and pressures (up to 10 bar). Sequential deposition of palladium and silver on to porous alumina tubes by ELD technique was carried out using two different procedures: a stirred batch and a continuous flux method. Pure palladium as well as Pd-Ag membranes were produced: the Pd-Ag membranes’ composition is calculated to be close to 77% Pd and 23% Ag by weight which was the target value that correspond to the best performance of the palladium-based alloys. One of the membranes produced showed an infinite selectivity through hydrogen and relatively high permeability value and is suitable for the potential use as a hydrogen separator. The hydrogen sorption in silver palladium alloys was carried out in a gravimetric system on films produced by ELD technique. In the temperature range inspected, up to 400°C, there is still a lack in literature. The experimental data were analyzed with rigorous equations allowing to calculate the enthalpy and entropy values of the Sieverts’ constant; the results were in very good agreement with the extrapolation made with literature data obtained a lower temperature (up to 150 °C). The information obtained in this study would be directly usable in the modeling of hydrogen permeation in Pd-based systems. Pure and mixed gas permeation tests were performed on Pd-based hydrogen selective membranes at operative conditions close to steam-reforming ones. Two membranes (one produced in this work and another produced by NGK Insulators Japan) showed a virtually infinite selectivity and good permeability. Mixture data revealed the existence of non negligible resistances to hydrogen transport in the gas phase. Even if the decrease of the driving force due to polarization concentration phenomena occurs, in principle, in all membrane-based separation systems endowed with high perm-selectivity, an extensive experimental analysis lack, at the moment, in the palladium-based membrane process in literature. Moreover a new procedure has been introduced for the proper comparison of the mass transport resistance in the gas phase and in the membrane. Another object of study was the water vapor sorption and permeation in PFSI membranes with short and long side chains was also studied; moreover the permeation of gases (i.e. He, N2 and O2) in dry and humid conditions was considered. The water vapor sorption showed strong interactions between the hydrophilic groups and the water as revealed from the hysteresis in the sorption-desorption isotherms and thermo gravimetric analysis. The data obtained were used in the modeling of water vapor permeation, that was described as diffusion-reaction of water molecules, and in the humid gases permeation experiments. In the dry gas experiments the permeability and diffusivity was found to increase with temperature and with the equivalent weight (EW) of the membrane. A linear correlation was drawn between the dry gas permeability and the opposite of the equivalent weight of PFSI membranes, based on which the permeability of pure PTFE is retrieved in the limit of high EW. In the other hand O2 ,N2 and He permeability values was found to increase significantly, and in a similar fashion, with water activity. A model that considers the PFSI membrane as a composite matrix with a hydrophilic and a hydrophobic phase was considered allowing to estimate the variation of gas permeability with relative humidity on the basis of the permeability in the dry PFSI membrane and in pure liquid water.
Resumo:
Ion channels are pore-forming proteins that regulate the flow of ions across biological cell membranes. Ion channels are fundamental in generating and regulating the electrical activity of cells in the nervous system and the contraction of muscolar cells. Solid-state nanopores are nanometer-scale pores located in electrically insulating membranes. They can be adopted as detectors of specific molecules in electrolytic solutions. Permeation of ions from one electrolytic solution to another, through a protein channel or a synthetic pore is a process of considerable importance and realistic analysis of the main dependencies of ion current on the geometrical and compositional characteristics of these structures are highly required. The project described by this thesis is an effort to improve the understanding of ion channels by devising methods for computer simulation that can predict channel conductance from channel structure. This project describes theory, algorithms and implementation techniques used to develop a novel 3-D numerical simulator of ion channels and synthetic nanopores based on the Brownian Dynamics technique. This numerical simulator could represent a valid tool for the study of protein ion channel and synthetic nanopores, allowing to investigate at the atomic-level the complex electrostatic interactions that determine channel conductance and ion selectivity. Moreover it will provide insights on how parameters like temperature, applied voltage, and pore shape could influence ion translocation dynamics. Furthermore it will help making predictions of conductance of given channel structures and it will add information like electrostatic potential or ionic concentrations throughout the simulation domain helping the understanding of ion flow through membrane pores.
Resumo:
The present work aims for investigate the influence of electrospun Nylon 6,6 nanofibrous mat on the behavior of composite laminates. The main idea is that nanofibrous interleaved into particular ply-to-ply interfaces of a laminate can lead to significant improvements of mechanical properties and delamination/damage resistance. Experimental campaigns were performed to investigate how nanofibers affect both the static and dynamic behavior of the laminate in which they are interleaved. Fracture mechanics tests were initially performed on virgin and 8 different configuration of nanomodified specimens. The purposes of this first step of the work are to understand which geometrical parameters of the nanointerleave influence the behavior of the laminate and, to find the optimal architecture of the nanofibrous mat in order to obtain the best reinforcement. In particular, 3 morphological parameters are investigated: nanofibers diameter, nanofibers orientation and thickness of the reinforce. Two different values for each parameter have been used, and it leads to 8 different configurations of nanoreinforce. Acoustic Emission technique is also used to monitor the tests. Once the optimum configuration has been found, attention is focused on the mechanism of reinforce played by the nanofibers during static and dynamic tests. Low velocity impacts and free decay tests are performed to attest the effect of nanointerlayers and the reinforce mechanism during the dynamic loads. Bump tests are performed before and after the impact on virgin and two different nanomodified laminates configurations. The authors focused their attention on: vibrational behavior, low velocity impact response and post-impact vibration behavior of the nano-interleaved laminates with respect to the response of non-nanomodified ones. Experiments attest that nanofibers significantly strength the delamination resistance of the laminates and increase some mechanical properties. It is demonstrated that the nanofibers are capable to continue to carry on the loads even when the matrix around them is broken.
Resumo:
The European Union set the ambitious target of reducing energy consumption by 20% within 2020. This goal demands a tremendous change in how we generate and consume energy and urgently calls for an aggressive policy on energy efficiency. Since 19% of the European electrical energy is used for lighting, considerable savings can be achieved with the development of novel and more efficient lighting systems. In this thesis, accomplished in the frame of the EU project CELLO, I report some selected goals we achieved attempting to develop highly efficient, flat, low cost and flexible light sources using Light-Emitting Electrochemical Cells (LECs), based on ionic cyclometalated iridium(III) complexes. After an extensive introduction about LECs and solid-state lighting in general, I focus on the research we carried out on cyclometalated iridium(III) complexes displaying deep-blue emission, which has turned out to be a rather challenging task. In order to demonstrate the wide versatility of this class of compounds, I also report a case in which some tailored iridium(III) complexes act as near-infrared (NIR) sources. In fact, standard NIR emitting devices are typically expensive and, also in this case, LECs could serve as low-cost alternatives in fields were NIR luminescence is crucial, such as telecommunications and bioimaging. Since LECs are based on only one active material, in the last chapter I stress the importance of an integrated approach toward the right selection of suitable emitters not only from the photophysical, but also from the point of view of material science. An iridium(III) complex, once in the device, is interacting with ionic liquids, metal cathodes, electric fields, etc. All these interactions should be taken in to account if Europe really wants to implement more efficient lighting paradigms, generating light beyond research labs.
Resumo:
Fibre-Reinforced-Plastics are composite materials composed by thin fibres with high mechanical properties, made to work together with a cohesive plastic matrix. The huge advantages of fibre reinforced plastics over traditional materials are their high specific mechanical properties i.e. high stiffness and strength to weight ratios. This kind of composite materials is the most disruptive innovation in the structural materials field seen in recent years and the areas of potential application are still many. However, there are few aspects which limit their growth: on the one hand the information available about their properties and long term behaviour is still scarce, especially if compared with traditional materials for which there has been developed an extended database through years of use and research. On the other hand, the technologies of production are still not as developed as the ones available to form plastics, metals and other traditional materials. A third aspect is that the new properties presented by these materials e.g. their anisotropy, difficult the design of components. This thesis will provide several case-studies with advancements regarding the three limitations mentioned. In particular, the long term mechanical properties have been studied through an experimental analysis of the impact of seawater on GFRP. Regarding production methods, the pre-impregnated cured in autoclave process was considered: a rapid tooling method to produce moulds will be presented, and a study about the production of thick components. Also, two liquid composite moulding methods will be presented, with a case-study regarding a large component with sandwich structure that was produced with the Vacuum-Assisted-Resin-Infusion method, and a case-study regarding a thick con-rod beam that was produced with the Resin-Transfer-Moulding process. The final case-study will analyse the loads acting during the use of a particular sportive component, made with FRP layers and a sandwich structure, practical design rules will be provided.
Resumo:
In this work, new tools in atmospheric pollutant sampling and analysis were applied in order to go deeper in source apportionment study. The project was developed mainly by the study of atmospheric emission sources in a suburban area influenced by a municipal solid waste incinerator (MSWI), a medium-sized coastal tourist town and a motorway. Two main research lines were followed. For what concerns the first line, the potentiality of the use of PM samplers coupled with a wind select sensor was assessed. Results showed that they may be a valid support in source apportionment studies. However, meteorological and territorial conditions could strongly affect the results. Moreover, new markers were investigated, particularly focusing on the processes of biomass burning. OC revealed a good biomass combustion process indicator, as well as all determined organic compounds. Among metals, lead and aluminium are well related to the biomass combustion. Surprisingly PM was not enriched of potassium during bonfire event. The second research line consists on the application of Positive Matrix factorization (PMF), a new statistical tool in data analysis. This new technique was applied to datasets which refer to different time resolution data. PMF application to atmospheric deposition fluxes identified six main sources affecting the area. The incinerator’s relative contribution seemed to be negligible. PMF analysis was then applied to PM2.5 collected with samplers coupled with a wind select sensor. The higher number of determined environmental indicators allowed to obtain more detailed results on the sources affecting the area. Vehicular traffic revealed the source of greatest concern for the study area. Also in this case, incinerator’s relative contribution seemed to be negligible. Finally, the application of PMF analysis to hourly aerosol data demonstrated that the higher the temporal resolution of the data was, the more the source profiles were close to the real one.
Resumo:
This project was born with the aim of developing an environmentally and financially sustainable process to dispose of end-life tires. In this perspective was devised an innovative static bed batch pilot reactor where pyrolysis can be carried out on the whole tires in order to recover energy and materials and simultaneously save the energy costs of their shredding. The innovative plant is also able to guarantee a high safety of the process thanks to the presence of a hydraulic guard. The pilot plant was used to pyrolyze new and end-life tires at temperatures from 400 to 600°C with step of 50°C in presence of steam. The main objective of this research was to evaluate the influence of the maximum process temperature on yields and chemical-physics properties of pyrolysis products. In addition, in view of a scale-up of the plant in continuous mode, the influence of the nature of several different tires as well as the effects of the aging on the final products were studied. The same pilot plant was also used to carry out pyrolysis on polymeric matrix composites in order to obtain chemical feedstocks from the resin degradation together with the recovery of the reinforcement in the form of fibers. Carbon fibers reinforced composites ad fiberglass was treated in the 450-600°C range and the products was fully characterized. A second oxidative step was performed on the pyrolysis solid residue in order to obtain the fibers in a suitable condition for a subsequent re-impregnation in order to close the composite Life Cycle in a cradle-to-cradle approach. These investigations have demonstrated that steel wires, char, carbon and glass fibers recovered in the prototypal plant as solid residues can be a viable alternative to pristine materials, making use of them to obtain new products with a commercial added value.