3 resultados para insect cell

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Herpes simplex virus 1 (HSV-1) infects oral epitelial cells, then spreads to the nerve endings and estabilishes latency in sensory ganglia, from where it may, or may not reactivate. Diseases caused by virus reactivation include mild diseases such as muco-cutaneous lesions, and more severe, and even life-threatening encephalitis, or systemic infections affecting diverse organs. Herpes simplex virus represents the most comprehensive example of virus receptor interaction in Herpesviridae family, and the prototype virus encoding multipartite entry genes. In fact, it encodes 11-12 glycoproteins and a number of additional membrane proteins: five of these proteins play key roles in virus entry into subsceptible cells. Thus, glycoprotein B (gB) and glycoprotein C (gC) interact with heparan sulfate proteoglycan to enable initial attachment to cell surfaces. In the next step, in the entry cascade, gD binds a specific surface receptor such as nectin1 or HVEM. The interaction of glycoprotein D with the receptor alters the conformation of gD to enable the activation of gB, glycoprotein H, and glycoprotein L, a trio of glycoproteins that execute the fusion of the viral envelope with the plasma membrane. In this thesis, I described two distinct projects: I. The retargeting of viral tropism for the design of oncolytic Herpesviruses: • capable of infecting cells through the human epitelial growth factor receptor 2 (HER2), overexpressed in highly malignant mammary and ovarian tumors and correlates with a poor prognosis; • detargeted from its natural receptors, HVEM and nectin1. To this end, we inserted a ligand to HER2 in gD. Because HER2 has no natural ligand, the selected ligand was a single chain antibody (scFv) derived from MAb4D5 (monoclonal antibody to HER2), herein designated scHER2. All recombinant viruses were targeted to HER2 receptor, but only two viruses (R-LM113 and R-LM249) were completely detargeted from HVEM and nectin1. To engineer R-LM113, we removed a large portion at the N-terminus of gD (from aa 6 to aa 38) and inserted scHER2 sequence plus 9-aa serine-glycine flexible linker at position 39. On the other hand, to engineer R-LM249, we replaced the Ig-folded core of gD (from aa 61 to aa 218) with scHER2 flanked by Ser-Gly linkers. In summary, these results provide evidence that: i. gD can tolerate an insert almost as big as gD itself; ii. the Ig-like domain of gD can be removed; iii. the large portion at the N-terminus of gD (from aa 6 to aa 38) can be removed without loss of key function; iv. R-LM113 and R-LM249 recombinants are ready to be assayed in animal models of mammary and ovary tumour. This finding and the avaibility of a large number of scFv greatly increase the collection of potential receptors to which HSV can be redirected. II. The production and purification of recombinant truncated form of the heterodimer gHgL. We cloned a stable insect cell line expressing a soluble form of gH in complex with gL under the control of a metalloprotein inducible promoter and purified the heterodimer by means of ONE-STrEP-tag system by IBA. With respect to biological function, the purified heterodimer is capable: • of reacting to antibodies that recognize conformation dependent epitopes and neutralize virion infectivity; • of binding a variety cells at cell surface. No doubt, the availability of biological active purified gHgL heterodimer, in sufficient quantities, will speed up the efforts to solve its crystal structure and makes it feasible to identify more clearly whether gHgL has a cellular partner, and what is the role of this interaction on virus entry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Drosophila the steroid hormone ecdysone regulates a wide range of developmental and physiological responses, including reproduction, embryogenesis, postembryonic development and metamorphosis. Drosophila provides an excellent system to address some fundamental questions linked to hormone actions. In fact, the apparent relative simplicity of its hormone signaling pathways taken together with well-established genetic and genomic tools developed to this purpose, defines this insect as an ideal model system for studying the molecular mechanisms through which steroid hormones act. During my PhD research program I’ve analyzed the role of ecdysone signaling to gain insight into the molecular mechanisms through which the hormone fulfills its pleiotropic functions in two different developmental stages: the oogenesis and the imaginal wing disc morphogenesis. To this purpose, I performed a reverse genetic analysis to silence the function of two different genes involved in ecdysone signaling pathway, EcR and ecd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The final goal of the bioassay developed during the first two years of my Ph.D. was its application for the screening of antioxidant activity of nutraceuticals and for monitoring the intracellular H2O2 production in peripheral blood mononuclear cells (PBMCs) from hypercholesterolemic subjects before and after two months treatment with Evolocumab, a new generation LDL-cholesterol lowering drug. Moreover, a recombinant bioluminescent protein was developed during the last year using the Baculovirus expression system in insect cells. In particular, the protein combines the extracellular domain (ECD) of the Notch high affinity mutated form of one of the selective Notch ligands defined as Jagged 1 (Jag1) with a red emitting firefly luciferase since a pivotal role of “aberrant” Notch signaling activation in colorectal cancer (CRC) was reported. The probe was validated and characterized in terms of analytical performance and through imaging experiments, in order to understand if Jagged1-FLuc binding correlates with a Notch signaling overexpression and activation in CRC progression.