3 resultados para information flow properties
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This research was designed to answer the question of which direction the restructuring of financial regulators should take – consolidation or fragmentation. This research began by examining the need for financial regulation and its related costs. It then continued to describe what types of regulatory structures exist in the world; surveying the regulatory structures in 15 jurisdictions, comparing them and discussing their strengths and weaknesses. This research analyzed the possible regulatory structures using three methodological tools: Game-Theory, Institutional-Design, and Network-Effects. The incentives for regulatory action were examined in Chapter Four using game theory concepts. This chapter predicted how two regulators with overlapping supervisory mandates will behave in two different states of the world (where they can stand to benefit from regulating and where they stand to lose). The insights derived from the games described in this chapter were then used to analyze the different supervisory models that exist in the world. The problem of information-flow was discussed in Chapter Five using tools from institutional design. The idea is based on the need for the right kind of information to reach the hands of the decision maker in the shortest time possible in order to predict, mitigate or stop a financial crisis from occurring. Network effects and congestion in the context of financial regulation were discussed in Chapter Six which applied the literature referring to network effects in general in an attempt to conclude whether consolidating financial regulatory standards on a global level might also yield other positive network effects. Returning to the main research question, this research concluded that in general the fragmented model should be preferable to the consolidated model in most cases as it allows for greater diversity and information-flow. However, in cases in which close cooperation between two authorities is essential, the consolidated model should be used.
Resumo:
Recent advances in the fast growing area of therapeutic/diagnostic proteins and antibodies - novel and highly specific drugs - as well as the progress in the field of functional proteomics regarding the correlation between the aggregation of damaged proteins and (immuno) senescence or aging-related pathologies, underline the need for adequate analytical methods for the detection, separation, characterization and quantification of protein aggregates, regardless of the their origin or formation mechanism. Hollow fiber flow field-flow fractionation (HF5), the miniaturized version of FlowFFF and integral part of the Eclipse DUALTEC FFF separation system, was the focus of this research; this flow-based separation technique proved to be uniquely suited for the hydrodynamic size-based separation of proteins and protein aggregates in a very broad size and molecular weight (MW) range, often present at trace levels. HF5 has shown to be (a) highly selective in terms of protein diffusion coefficients, (b) versatile in terms of bio-compatible carrier solution choice, (c) able to preserve the biophysical properties/molecular conformation of the proteins/protein aggregates and (d) able to discriminate between different types of protein aggregates. Thanks to the miniaturization advantages and the online coupling with highly sensitive detection techniques (UV/Vis, intrinsic fluorescence and multi-angle light scattering), HF5 had very low detection/quantification limits for protein aggregates. Compared to size-exclusion chromatography (SEC), HF5 demonstrated superior selectivity and potential as orthogonal analytical method in the extended characterization assays, often required by therapeutic protein formulations. In addition, the developed HF5 methods have proven to be rapid, highly selective, sensitive and repeatable. HF5 was ideally suitable as first dimension of separation of aging-related protein aggregates from whole cell lysates (proteome pre-fractionation method) and, by HF5-(UV)-MALS online coupling, important biophysical information on the fractionated proteins and protein aggregates was gathered: size (rms radius and hydrodynamic radius), absolute MW and conformation.
Resumo:
Nanotechnologies are rapidly expanding because of the opportunities that the new materials offer in many areas such as the manufacturing industry, food production, processing and preservation, and in the pharmaceutical and cosmetic industry. Size distribution of the nanoparticles determines their properties and is a fundamental parameter that needs to be monitored from the small-scale synthesis up to the bulk production and quality control of nanotech products on the market. A consequence of the increasing number of applications of nanomaterial is that the EU regulatory authorities are introducing the obligation for companies that make use of nanomaterials to acquire analytical platforms for the assessment of the size parameters of the nanomaterials. In this work, Asymmetrical Flow Field-Flow Fractionation (AF4) and Hollow Fiber F4 (HF5), hyphenated with Multiangle Light Scattering (MALS) are presented as tools for a deep functional characterization of nanoparticles. In particular, it is demonstrated the applicability of AF4-MALS for the characterization of liposomes in a wide series of mediums. Afterwards the technique is used to explore the functional features of a liposomal drug vector in terms of its biological and physical interaction with blood serum components: a comprehensive approach to understand the behavior of lipid vesicles in terms of drug release and fusion/interaction with other biological species is described, together with weaknesses and strength of the method. Afterwards the size characterization, size stability, and conjugation of azidothymidine drug molecules with a new generation of metastable drug vectors, the Metal Organic Frameworks, is discussed. Lastly, it is shown the applicability of HF5-ICP-MS for the rapid screening of samples of relevant nanorisk: rather than a deep and comprehensive characterization it this time shown a quick and smart methodology that within few steps provides qualitative information on the content of metallic nanoparticles in tattoo ink samples.