8 resultados para information flow
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Most cognitive functions require the encoding and routing of information across distributed networks of brain regions. Information propagation is typically attributed to physical connections existing between brain regions, and contributes to the formation of spatially correlated activity patterns, known as functional connectivity. While structural connectivity provides the anatomical foundation for neural interactions, the exact manner in which it shapes functional connectivity is complex and not yet fully understood. Additionally, traditional measures of directed functional connectivity only capture the overall correlation between neural activity, and provide no insight on the content of transmitted information, limiting their ability in understanding neural computations underlying the distributed processing of behaviorally-relevant variables. In this work, we first study the relationship between structural and functional connectivity in simulated recurrent spiking neural networks with spike timing dependent plasticity. We use established measures of time-lagged correlation and overall information propagation to infer the temporal evolution of synaptic weights, showing that measures of dynamic functional connectivity can be used to reliably reconstruct the evolution of structural properties of the network. Then, we extend current methods of directed causal communication between brain areas, by deriving an information-theoretic measure of Feature-specific Information Transfer (FIT) quantifying the amount, content and direction of information flow. We test FIT on simulated data, showing its key properties and advantages over traditional measures of overall propagated information. We show applications of FIT to several neural datasets obtained with different recording methods (magneto and electro-encephalography, spiking activity, local field potentials) during various cognitive functions, ranging from sensory perception to decision making and motor learning. Overall, these analyses demonstrate the ability of FIT to advance the investigation of communication between brain regions, uncovering the previously unaddressed content of directed information flow.
Resumo:
This research was designed to answer the question of which direction the restructuring of financial regulators should take – consolidation or fragmentation. This research began by examining the need for financial regulation and its related costs. It then continued to describe what types of regulatory structures exist in the world; surveying the regulatory structures in 15 jurisdictions, comparing them and discussing their strengths and weaknesses. This research analyzed the possible regulatory structures using three methodological tools: Game-Theory, Institutional-Design, and Network-Effects. The incentives for regulatory action were examined in Chapter Four using game theory concepts. This chapter predicted how two regulators with overlapping supervisory mandates will behave in two different states of the world (where they can stand to benefit from regulating and where they stand to lose). The insights derived from the games described in this chapter were then used to analyze the different supervisory models that exist in the world. The problem of information-flow was discussed in Chapter Five using tools from institutional design. The idea is based on the need for the right kind of information to reach the hands of the decision maker in the shortest time possible in order to predict, mitigate or stop a financial crisis from occurring. Network effects and congestion in the context of financial regulation were discussed in Chapter Six which applied the literature referring to network effects in general in an attempt to conclude whether consolidating financial regulatory standards on a global level might also yield other positive network effects. Returning to the main research question, this research concluded that in general the fragmented model should be preferable to the consolidated model in most cases as it allows for greater diversity and information-flow. However, in cases in which close cooperation between two authorities is essential, the consolidated model should be used.
Resumo:
The present work concerns with the study of debris flows and, in particular, with the related hazard in the Alpine Environment. During the last years several methodologies have been developed to evaluate hazard associated to such a complex phenomenon, whose velocity, impacting force and inappropriate temporal prediction are responsible of the related high hazard level. This research focuses its attention on the depositional phase of debris flows through the application of a numerical model (DFlowz), and on hazard evaluation related to watersheds morphometric, morphological and geological characterization. The main aims are to test the validity of DFlowz simulations and assess sources of errors in order to understand how the empirical uncertainties influence the predictions; on the other side the research concerns with the possibility of performing hazard analysis starting from the identification of susceptible debris flow catchments and definition of their activity level. 25 well documented debris flow events have been back analyzed with the model DFlowz (Berti and Simoni, 2007): derived form the implementation of the empirical relations between event volume and planimetric and cross section inundated areas, the code allows to delineate areas affected by an event by taking into account information about volume, preferential flow path and digital elevation model (DEM) of fan area. The analysis uses an objective methodology for evaluating the accuracy of the prediction and involve the calibration of the model based on factors describing the uncertainty associated to the semi empirical relationships. The general assumptions on which the model is based have been verified although the predictive capabilities are influenced by the uncertainties of the empirical scaling relationships, which have to be necessarily taken into account and depend mostly on errors concerning deposited volume estimation. In addition, in order to test prediction capabilities of physical-based models, some events have been simulated through the use of RAMMS (RApid Mass MovementS). The model, which has been developed by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) in Birmensdorf and the Swiss Federal Institute for Snow and Avalanche Research (SLF) takes into account a one-phase approach based on Voellmy rheology (Voellmy, 1955; Salm et al., 1990). The input file combines the total volume of the debris flow located in a release area with a mean depth. The model predicts the affected area, the maximum depth and the flow velocity in each cell of the input DTM. Relatively to hazard analysis related to watersheds characterization, the database collected by the Alto Adige Province represents an opportunity to examine debris-flow sediment dynamics at the regional scale and analyze lithologic controls. With the aim of advancing current understandings about debris flow, this study focuses on 82 events in order to characterize the topographic conditions associated with their initiation , transportation and deposition, seasonal patterns of occurrence and examine the role played by bedrock geology on sediment transfer.
Resumo:
In this thesis we discuss a representation of quantum mechanics and quantum and statistical field theory based on a functional renormalization flow equation for the one-particle-irreducible average effective action, and we employ it to get information on some specific systems.
Resumo:
The meaning of a place has been commonly assigned to the quality of having root (rootedness) or sense of belonging to that setting. While on the contrary, people are nowadays more concerned with the possibilities of free moving and networks of communication. So, the meaning, as well as the materiality of architecture has been dramatically altered with these forces. It is therefore of significance to explore and redefine the sense and the trend of architecture at the age of flow. In this dissertation, initially, we review the gradually changing concept of "place-non-place" and its underlying technological basis. Then we portray the transformation of meaning of architecture as influenced by media and information technology and advanced methods of mobility, in the dawn of 21st century. Against such backdrop, there is a need to sort and analyze architectural practices in response to the triplet of place-non-place and space of flow, which we plan to achieve conclusively. We also trace the concept of flow in the process of formation and transformation of old cities. As a brilliant case study, we look at Persian Bazaar from a socio-architectural point of view. In other word, based on Robert Putnam's theory of social capital, we link social context of the Bazaar with architectural configuration of cities. That is how we believe "cities as flow" are not necessarily a new paradigm.
Resumo:
Recent advances in the fast growing area of therapeutic/diagnostic proteins and antibodies - novel and highly specific drugs - as well as the progress in the field of functional proteomics regarding the correlation between the aggregation of damaged proteins and (immuno) senescence or aging-related pathologies, underline the need for adequate analytical methods for the detection, separation, characterization and quantification of protein aggregates, regardless of the their origin or formation mechanism. Hollow fiber flow field-flow fractionation (HF5), the miniaturized version of FlowFFF and integral part of the Eclipse DUALTEC FFF separation system, was the focus of this research; this flow-based separation technique proved to be uniquely suited for the hydrodynamic size-based separation of proteins and protein aggregates in a very broad size and molecular weight (MW) range, often present at trace levels. HF5 has shown to be (a) highly selective in terms of protein diffusion coefficients, (b) versatile in terms of bio-compatible carrier solution choice, (c) able to preserve the biophysical properties/molecular conformation of the proteins/protein aggregates and (d) able to discriminate between different types of protein aggregates. Thanks to the miniaturization advantages and the online coupling with highly sensitive detection techniques (UV/Vis, intrinsic fluorescence and multi-angle light scattering), HF5 had very low detection/quantification limits for protein aggregates. Compared to size-exclusion chromatography (SEC), HF5 demonstrated superior selectivity and potential as orthogonal analytical method in the extended characterization assays, often required by therapeutic protein formulations. In addition, the developed HF5 methods have proven to be rapid, highly selective, sensitive and repeatable. HF5 was ideally suitable as first dimension of separation of aging-related protein aggregates from whole cell lysates (proteome pre-fractionation method) and, by HF5-(UV)-MALS online coupling, important biophysical information on the fractionated proteins and protein aggregates was gathered: size (rms radius and hydrodynamic radius), absolute MW and conformation.
Resumo:
Nanotechnologies are rapidly expanding because of the opportunities that the new materials offer in many areas such as the manufacturing industry, food production, processing and preservation, and in the pharmaceutical and cosmetic industry. Size distribution of the nanoparticles determines their properties and is a fundamental parameter that needs to be monitored from the small-scale synthesis up to the bulk production and quality control of nanotech products on the market. A consequence of the increasing number of applications of nanomaterial is that the EU regulatory authorities are introducing the obligation for companies that make use of nanomaterials to acquire analytical platforms for the assessment of the size parameters of the nanomaterials. In this work, Asymmetrical Flow Field-Flow Fractionation (AF4) and Hollow Fiber F4 (HF5), hyphenated with Multiangle Light Scattering (MALS) are presented as tools for a deep functional characterization of nanoparticles. In particular, it is demonstrated the applicability of AF4-MALS for the characterization of liposomes in a wide series of mediums. Afterwards the technique is used to explore the functional features of a liposomal drug vector in terms of its biological and physical interaction with blood serum components: a comprehensive approach to understand the behavior of lipid vesicles in terms of drug release and fusion/interaction with other biological species is described, together with weaknesses and strength of the method. Afterwards the size characterization, size stability, and conjugation of azidothymidine drug molecules with a new generation of metastable drug vectors, the Metal Organic Frameworks, is discussed. Lastly, it is shown the applicability of HF5-ICP-MS for the rapid screening of samples of relevant nanorisk: rather than a deep and comprehensive characterization it this time shown a quick and smart methodology that within few steps provides qualitative information on the content of metallic nanoparticles in tattoo ink samples.
Resumo:
The study of optic flow on postural control may explain how self-motion perception contributes to postural stability in young males and females and how such function changes in the old falls risk population. Study I: The aim was to examine the optic flow effect on postural control in young people (n=24), using stabilometry and surface-electromyography. Subjects viewed expansion and contraction optic flow stimuli which were presented full field, in the foveral or in the peripheral visual field. Results showed that optic flow stimulation causes an asymmetry in postural balance and a different lateralization of postural control in men and women. Gender differences evoked by optic flow were found both in the muscle activity and in the prevalent direction of oscillation. The COP spatial variability was reduced during the view of peripheral stimuli which evoked a clustered prevalent direction of oscillation, while foveal and random stimuli induced non-distributed directions. Study II was aimed at investigating the age-related mechanisms of postural stability during the view of optic flow stimuli in young (n=17) and old (n=19) people, using stabilometry and kinematic. Results showed that old people showed a greater effort to maintain posture during the view of optic flow stimuli than the young. Elderly seems to use the head stabilization on trunk strategy. Visual stimuli evoke an excitatory input on postural muscles, but the stimulus structure produces different postural effects. Peripheral optic flow stabilizes postural sway, while random and foveal stimuli provoke larger sway variability similar to those evoked in baseline. Postural control uses different mechanisms within each leg to produce the appropriate postural response to interact with extrapersonal environment. Ageing reduce the effortlessness to stabilize posture during optic flow, suggesting a neuronal processing decline associated with difficulty integrating multi-sensory information of self-motion perception and increasing risk of falls.