9 resultados para inflammation intestinale

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ideal approach for the long term treatment of intestinal disorders, such as inflammatory bowel disease (IBD), is represented by a safe and well tolerated therapy able to reduce mucosal inflammation and maintain homeostasis of the intestinal microbiota. A combined therapy with antimicrobial agents, to reduce antigenic load, and immunomodulators, to ameliorate the dysregulated responses, followed by probiotic supplementation has been proposed. Because of the complementary mechanisms of action of antibiotics and probiotics, a combined therapeutic approach would give advantages in terms of enlargement of the antimicrobial spectrum, due to the barrier effect of probiotic bacteria, and limitation of some side effects of traditional chemiotherapy (i.e. indiscriminate decrease of aggressive and protective intestinal bacteria, altered absorption of nutrient elements, allergic and inflammatory reactions). Rifaximin (4-deoxy-4’-methylpyrido[1’,2’-1,2]imidazo[5,4-c]rifamycin SV) is a product of synthesis experiments designed to modify the parent compound, rifamycin, in order to achieve low gastrointestinal absorption while retaining good antibacterial activity. Both experimental and clinical pharmacology clearly show that this compound is a non systemic antibiotic with a broad spectrum of antibacterial action, covering Gram-positive and Gram-negative organisms, both aerobes and anaerobes. Being virtually non absorbed, its bioavailability within the gastrointestinal tract is rather high with intraluminal and faecal drug concentrations that largely exceed the MIC values observed in vitro against a wide range of pathogenic microorganisms. The gastrointestinal tract represents therefore the primary therapeutic target and gastrointestinal infections the main indication. The little value of rifaximin outside the enteric area minimizes both antimicrobial resistance and systemic adverse events. Fermented dairy products enriched with probiotic bacteria have developed into one of the most successful categories of functional foods. Probiotics are defined as “live microorganisms which, when administered in adequate amounts, confer a health benefit on the host” (FAO/WHO, 2002), and mainly include Lactobacillus and Bifidobacterium species. Probiotic bacteria exert a direct effect on the intestinal microbiota of the host and contribute to organoleptic, rheological and nutritional properties of food. Administration of pharmaceutical probiotic formula has been associated with therapeutic effects in treatment of diarrhoea, constipation, flatulence, enteropathogens colonization, gastroenteritis, hypercholesterolemia, IBD, such as ulcerative colitis (UC), Crohn’s disease, pouchitis and irritable bowel syndrome. Prerequisites for probiotics are to be effective and safe. The characteristics of an effective probiotic for gastrointestinal tract disorders are tolerance to upper gastrointestinal environment (resistance to digestion by enteric or pancreatic enzymes, gastric acid and bile), adhesion on intestinal surface to lengthen the retention time, ability to prevent the adherence, establishment and/or replication of pathogens, production of antimicrobial substances, degradation of toxic catabolites by bacterial detoxifying enzymatic activities, and modulation of the host immune responses. This study was carried out using a validated three-stage fermentative continuous system and it is aimed to investigate the effect of rifaximin on the colonic microbial flora of a healthy individual, in terms of bacterial composition and production of fermentative metabolic end products. Moreover, this is the first study that investigates in vitro the impact of the simultaneous administration of the antibiotic rifaximin and the probiotic B. lactis BI07 on the intestinal microbiota. Bacterial groups of interest were evaluated using culture-based methods and molecular culture-independent techniques (FISH, PCR-DGGE). Metabolic outputs in terms of SCFA profiles were determined by HPLC analysis. Collected data demonstrated that rifaximin as well as antibiotic and probiotic treatment did not change drastically the intestinal microflora, whereas bacteria belonging to Bifidobacterium and Lactobacillus significantly increase over the course of the treatment, suggesting a spontaneous upsurge of rifaximin resistance. These results are in agreement with a previous study, in which it has been demonstrated that rifaximin administration in patients with UC, affects the host with minor variations of the intestinal microflora, and that the microbiota is restored over a wash-out period. In particular, several Bifidobacterium rifaximin resistant mutants could be isolated during the antibiotic treatment, but they disappeared after the antibiotic suspension. Furthermore, bacteria belonging to Atopobium spp. and E. rectale/Clostridium cluster XIVa increased significantly after rifaximin and probiotic treatment. Atopobium genus and E. rectale/Clostridium cluster XIVa are saccharolytic, butyrate-producing bacteria, and for these characteristics they are widely considered health-promoting microorganisms. The absence of major variations in the intestinal microflora of a healthy individual and the significant increase in probiotic and health-promoting bacteria concentrations support the rationale of the administration of rifaximin as efficacious and non-dysbiosis promoting therapy and suggest the efficacy of an antibiotic/probiotic combined treatment in several gut pathologies, such as IBD. To assess the use of an antibiotic/probiotic combination for clinical management of intestinal disorders, genetic, proteomic and physiologic approaches were employed to elucidate molecular mechanisms determining rifaximin resistance in Bifidobacterium, and the expected interactions occurring in the gut between these bacteria and the drug. The ability of an antimicrobial agent to select resistance is a relevant factor that affects its usefulness and may diminish its useful life. Rifaximin resistance phenotype was easily acquired by all bifidobacteria analyzed [type strains of the most representative intestinal bifidobacterial species (B. infantis, B. breve, B. longum, B. adolescentis and B. bifidum) and three bifidobacteria included in a pharmaceutical probiotic preparation (B. lactis BI07, B. breve BBSF and B. longum BL04)] and persisted for more than 400 bacterial generations in the absence of selective pressure. Exclusion of any reversion phenomenon suggested two hypotheses: (i) stable and immobile genetic elements encode resistance; (ii) the drug moiety does not act as an inducer of the resistance phenotype, but enables selection of resistant mutants. Since point mutations in rpoB have been indicated as representing the principal factor determining rifampicin resistance in E. coli and M. tuberculosis, whether a similar mechanism also occurs in Bifidobacterium was verified. The analysis of a 129 bp rpoB core region of several wild-type and resistant bifidobacteria revealed five different types of miss-sense mutations in codons 513, 516, 522 and 529. Position 529 was a novel mutation site, not previously described, and position 522 appeared interesting for both the double point substitutions and the heterogeneous profile of nucleotide changes. The sequence heterogeneity of codon 522 in Bifidobacterium leads to hypothesize an indirect role of its encoded amino acid in the binding with the rifaximin moiety. These results demonstrated the chromosomal nature of rifaximin resistance in Bifidobacterium, minimizing risk factors for horizontal transmission of resistance elements between intestinal microbial species. Further proteomic and physiologic investigations were carried out using B. lactis BI07, component of a pharmaceutical probiotic preparation, as a model strain. The choice of this strain was determined based on the following elements: (i) B. lactis BI07 is able to survive and persist in the gut; (ii) a proteomic overview of this strain has been recently reported. The involvement of metabolic changes associated with rifaximin resistance was investigated by proteomic analysis performed with two-dimensional electrophoresis and mass spectrometry. Comparative proteomic mapping of BI07-wt and BI07-res revealed that most differences in protein expression patterns were genetically encoded rather than induced by antibiotic exposure. In particular, rifaximin resistance phenotype was characterized by increased expression levels of stress proteins. Overexpression of stress proteins was expected, as they represent a common non specific response by bacteria when stimulated by different shock conditions, including exposure to toxic agents like heavy metals, oxidants, acids, bile salts and antibiotics. Also, positive transcription regulators were found to be overexpressed in BI07-res, suggesting that bacteria could activate compensatory mechanisms to assist the transcription process in the presence of RNA polymerase inhibitors. Other differences in expression profiles were related to proteins involved in central metabolism; these modifications suggest metabolic disadvantages of resistant mutants in comparison with sensitive bifidobacteria in the gut environment, without selective pressure, explaining their disappearance from faeces of patients with UC after interruption of antibiotic treatment. The differences observed between BI07-wt e BI07-res proteomic patterns, as well as the high frequency of silent mutations reported for resistant mutants of Bifidobacterium could be the consequences of an increased mutation rate, mechanism which may lead to persistence of resistant bacteria in the population. However, the in vivo disappearance of resistant mutants in absence of selective pressure, allows excluding the upsurge of compensatory mutations without loss of resistance. Furthermore, the proteomic characterization of the resistant phenotype suggests that rifaximin resistance is associated with a reduced bacterial fitness in B. lactis BI07-res, supporting the hypothesis of a biological cost of antibiotic resistance in Bifidobacterium. The hypothesis of rifaximin inactivation by bacterial enzymatic activities was verified by using liquid chromatography coupled with tandem mass spectrometry. Neither chemical modifications nor degradation derivatives of the rifaximin moiety were detected. The exclusion of a biodegradation pattern for the drug was further supported by the quantitative recovery in BI07-res culture fractions of the total rifaximin amount (100 μg/ml) added to the culture medium. To confirm the main role of the mutation on the β chain of RNA polymerase in rifaximin resistance acquisition, transcription activity of crude enzymatic extracts of BI07-res cells was evaluated. Although the inhibition effects of rifaximin on in vitro transcription were definitely higher for BI07-wt than for BI07-res, a partial resistance of the mutated RNA polymerase at rifaximin concentrations > 10 μg/ml was supposed, on the basis of the calculated differences in inhibition percentages between BI07-wt and BI07-res. By considering the resistance of entire BI07-res cells to rifaximin concentrations > 100 μg/ml, supplementary resistance mechanisms may take place in vivo. A barrier for the rifaximin uptake in BI07-res cells was suggested in this study, on the basis of the major portion of the antibiotic found to be bound to the cellular pellet respect to the portion recovered in the cellular lysate. Related to this finding, a resistance mechanism involving changes of membrane permeability was supposed. A previous study supports this hypothesis, demonstrating the involvement of surface properties and permeability in natural resistance to rifampicin in mycobacteria, isolated from cases of human infection, which possessed a rifampicin-susceptible RNA polymerase. To understand the mechanism of membrane barrier, variations in percentage of saturated and unsaturated FAs and their methylation products in BI07-wt and BI07-res membranes were investigated. While saturated FAs confer rigidity to membrane and resistance to stress agents, such as antibiotics, a high level of lipid unsaturation is associated with high fluidity and susceptibility to stresses. Thus, the higher percentage of saturated FAs during the stationary phase of BI07-res could represent a defence mechanism of mutant cells to prevent the antibiotic uptake. Furthermore, the increase of CFAs such as dihydrosterculic acid during the stationary phase of BI07-res suggests that this CFA could be more suitable than its isomer lactobacillic acid to interact with and prevent the penetration of exogenous molecules including rifaximin. Finally, the impact of rifaximin on immune regulatory functions of the gut was evaluated. It has been suggested a potential anti-inflammatory effect of rifaximin, with reduced secretion of IFN-γ in a rodent model of colitis. Analogously, it has been reported a significant decrease in IL-8, MCP-1, MCP-3 e IL-10 levels in patients affected by pouchitis, treated with a combined therapy of rifaximin and ciprofloxacin. Since rifaximin enables in vivo and in vitro selection of Bifidobacterium resistant mutants with high frequency, the immunomodulation activities of rifaximin associated with a B. lactis resistant mutant were also taken into account. Data obtained from PBMC stimulation experiments suggest the following conclusions: (i) rifaximin does not exert any effect on production of IL-1β, IL-6 and IL-10, whereas it weakly stimulates production of TNF-α; (ii) B. lactis appears as a good inducer of IL-1β, IL-6 and TNF-α; (iii) combination of BI07-res and rifaximin exhibits a lower stimulation effect than BI07-res alone, especially for IL-6. These results confirm the potential anti-inflammatory effect of rifaximin, and are in agreement with several studies that report a transient pro-inflammatory response associated with probiotic administration. The understanding of the molecular factors determining rifaximin resistance in the genus Bifidobacterium assumes an applicative significance at pharmaceutical and medical level, as it represents the scientific basis to justify the simultaneous use of the antibiotic rifaximin and probiotic bifidobacteria in the clinical treatment of intestinal disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Several lines of evidence showed that inflammation is associated with changes in the expression of tachykinins both in human and animal models. Tachykinins, including substance P (SP), are small peptides expressed in the extrinsic primary afferent nerve fibres and enteric neurons of the gut: they exert their action through three distinct receptors, termed NK1, NK2 and NK3. SP modulates intestinal motility and enteric secretion, acting preferentially through the NK1 receptor. SP neural network and NK1 receptor expression are increased in patients with inflammatory bowel disease, and similar changes were observed in experimental models of inflammation. The 2,4 Dinitrobenzene Sulphonic Acid (DNBS) model of colitis is useful to study innate immunity, non-specific inflammation and wound healing; it has been suggested that the transmural inflammation seen in this model resembles that found in Crohn’s disease and can therefore be used to study what cells and mediators are involved in this type of inflammation. Aim: To test the possible protective effect of the NK1 receptor antagonist SSR140333 on: 1) acute model of intestinal inflammation; 2) reactivation of DNBS-induced colitis in rats. Methods: Acute colitis was induced in male SD rats by intrarectal administration of DNBS (15 mg/rat in 50% ethanol). Reactivation of colitis was induced by intrarectal injections of DNBS on day 28 (7.5 mg/rat in 35% ethanol). Animals were sacrificed on day 6 (acute colitis) and 29 (reactivation of colitis). SSR140333 (10 mg/kg) was administered orally starting from the day before the induction of colitis for 7 days (acute colitis) or seven days before the reactivation of colitis. Colonic damage was assessed by means of macroscopic and microscopic scores, myeloperoxidase activity (MPO) and TNF-α tissue levels. Enzyme immunoassay was used to measure colonic substance P levels. Statistical analysis was performed using analysis of variance (one-way or two-way, as appropriate) with the Bonferroni’s correction for multiple comparisons. Results: DNBS administration impaired body weight gain and markedly increased all inflammatory parameters (p<0.01). Treatment with SSR140333 10 mg/kg significantly counteracted the impairment in body weight gain, decreased macroscopic and histological scores and reduced colonic myeloperoxidase activity (p<0.01). Drug treatment counteracted TNF-α tissue levels and colonic SP concentrations (acute model). Similar results were obtained administering the NK1 receptor antagonist SSR140333 (3 and 10 mg/kg) for 5 days, starting the day after the induction of colitis. Intrarectal administration of DNBS four weeks after the first DNBS administration resulted in reactivation of colitis, with increases in macroscopic and histological damage scores and increase in MPO activity. Preventive treatment with SSR140333 10 mg/kg decreased macroscopic damage score, significantly reduced microscopic damage score but did not affect MPO activity. Conclusions: Treatment with SSR140333 significantly reduced intestinal damage in acute model of intestinal inflammation in rats. The NK1 receptor antagonist SSR140333 was also able to prevent relapse in experimental colitis. These results support the hypothesis of SP involvement in intestinal inflammation and indicate that NK receptor antagonists may have a therapeutic potential in inflammatory bowel disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim of the research: to develop a prototype of homogeneous high-throughput screening (HTS) for identification of novel integrin antagonists for the treatment of ocular allergy and to better understand the mechanisms of action of integrin-mediated levocabastine antiallergic action. Results: This thesis provides evidence that adopting scintillation proximity assay (SPA) levocabastine (IC50=406 mM), but not the first-generation antihistamine chlorpheniramine, displaces [125I]fibronectin (FN) binding to human a4b1 integrin. This result is supported by flow cytometry analysis, where levocabastine antagonizes the binding of a primary antibody to integrin a4 expressed in Jurkat E6.1 cells. Levocabastine, but not chlorpheniramine, binds to a4b1 integrin and prevents eosinophil adhesion to VCAM-1, FN or human umbilical vein endothelial cells (HUVEC) cultured in vitro. Similarly, levocabastine affects aLb2/ICAM-1-mediated adhesion of Jurkat E6.1 cells. Analyzing the supernatant of TNF-a-treated (24h) eosinophilic cells (EoL-1), we report that levocabastine reduces the TNF-a-induced release of the cytokines IL-12p40, IL-8 and VEGF. Finally, in a model of allergic conjunctivitis, levocastine eye drops (0.05%) reduced the clinical aspects of the early and late phase reactions and the conjunctival expression of a4b1 integrin by reducing infiltrated eosinophils. Conclusions: SPA is a highly efficient, amenable to automation and robust binding assay to screen novel integrin antagonists in a HTS setting. We propose that blockade of integrinmediated cell adhesion might be a target of the anti-allergic action of levocabastine and may play a role in preventing eosinophil adhesion and infiltration in allergic conjunctivitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Intestinal fibrosis is a serious complication of IBD, with more than a third of Crohn’s disease (CD) patients developing a fibrostenosing phenotype with formation of strictures that will require surgical intervention. Remarkably, SAMP1/YitFc (SAMP) mice, a spontaneous model of CD, develop gut fibrosis; similar to IBD patients, the pathophysiology of SAMP fibrosis is unknown. IL-33 is a member of the IL-1 cytokine family and increased expression is associated with IBD. Emerging evidence suggests its potential role in liver and cutaneous fibrosis, as well as myofibroblast-associated colonic ulcerations . Aim: The aim of this study was to evaluate the role of IL-33 as a potential mediator of profibrotic events leading to intestinal fibrosis and possible stricture formation. Methods: A detailed histologic time course study, with collagen-specific Masson trichrome staining and IHC for ST2 (IL-33 receptor), was performed on SAMP and control AKR (parental strain) mice. qRT-PCR was done on full-thickness ilea for the profibrogenic genes, collagen (coll)-1, coll-3, connective tissue growth factor (CTGF) and insulin-like growth factor 1 (IGF-1). Exogenous IL-33 (33 μg/kg, i.p.) or vehicle was administered daily for 7d to SAMP and AKR mice (N=6/exp group), and ileal tissues evaluated as above. Finally, microarray analysis was performed on full-thickness ilea from SAMP and AKR mice, and IL-33 stimulated subepithelial myofibroblasts (SEMFs). Results: SAMP mice displayed ileal skip lesions with randomly distributed strictures, preceded by typical pre-stricture dilations of the ileum. Ileal wall was visibly thickened with hypertrophy of the serosa, muscularis mucosa, muscularis propria, within which intense collagen deposition was observed, and inflammatory infiltrates in segments showing strictures. Interestingly, intense ST2 staining was present within the inflamed lamina propria of SAMP, notably localized to SEMFs. Fibrosis was first observed at 20 wks, and reached its peak by 50 wks of age. mRNA expression of coll-1 (4.74±0.69-fold; P=0.001), coll-3 (4.92±1.05-fold; P=0.01), IGF1 (12.9±3.45; P=0.006), and CTGF (3.29±0.69; P=0.004) was dramatically elevated in SAMP vs. AKR ilea. IL-33 treatment of AKR mice induced a marked increase in muscle fiber/myofibroblast cellularity and hypertrophy of the muscularis propria (4.13±0.74-fold; P<0.0001), and mRNA expression of coll-1 (5.16±0.89-fold; P=0.0009), coll-3 (1.97±0.14-fold; P=0.01), IGF-1 (9.32±2.27-fold; P=0.004), and CTGF (1.43±0.31-fold; P=0.006) vs. vehicle controls. Microarray data from SAMP ilea and IL-33-treated SEMFs confirmed these trends, displaying a global increase in profibrogenic gene expression. Conclusion: These data suggest an important role for IL-33 in intestinal fibrosis, and may represent a potential target for the treatment of IBD-associated fibrosis and stricture formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obiettivi. L’ecografia con mezzo di contrasto (CEUS) può fornire informazioni sulla microvascolarizzazione della parete intestinale nella malattia di Crohn. L’infiammazione della parete intestinale non sembra essere correlata alla quantità di parete vascolarizzata (studi di pattern di vascolarizzazione, SVP) ma all’intensità del flusso di parete in un determinato periodo di tempo (studi di intensità-tempo, SIT). Scopo dello studio è valutare se gli studi SVP e/o SIT mediante CEUS siano in grado di mostrare il reale grado d’infiammazione della parete vascolare e se possano predire l’attività di malattia a 3 mesi. Materiali e metodi: 30 pazienti con malattia di Crohn venivano sottoposti a SVP e SIT mediante CEUS e venivano rivisti dopo 3 mesi. L’eCografia era eseguita con uno strumento dedicato con un software particolare per il calcolo delle curve intensità-tempo e con l’ausilio di un mezzo di contrasto (Sonovue). L’analisi quantitativa consisteva nella misura dell’area sotto la curva (AUC) (con cut-off tra malattia attiva e inattiva di 15) e di un intensità media (IM) con un cut-off di 10. Tutti gli esami venivano registrati e analizzati in modo digitale. Risultati: A T0: CDAI era inferiore a 150 in 22 pazienti e superiore a 150 in 8 pazienti; a T3: CDAI era inferiore a 150 in 19 pazienti e superiore a 150 in 11 pazienti. A T0 sia la CEUS SPV che la SIT evidenziavano bassa specificità, accuratezza diagnostica e valore predittivo negativo; a T3 la CEUS SVP mostrava bassa sensibilità e accuratezza diagnostica rispetto alla SIT che era in grado, in tutti i casi tranne uno, di predire l’attività clinica di malattia a tre mesi. Conclusioni: in questo studio, la CEUS-SIT ha mostrato buona accuratezza diagnostica nel predire l’attività clinica di malattia nel follow-up a breve termine di pazienti con malattia di Crohn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obiettivo: capire la relazione che intercorre tra le coliche del cavallo e le parassitosi intestinali, quindi capire l’effettiva rilevanza clinica delle infezioni parassitarie. Tipo di studio: studio clinico-chirurgico e parassitologico. Metodi: in questo studio sono stati presi in esame 92 cavalli afferiti presso il servizio SARGA del Dipartimento di Scienze Mediche Veterinarie durante gli anni 2009-2011. 27 di questi soggetti sono stati sottoposti a laparotomia esplorativa per colica, 22 avevano una colica che si è risolta con terapia medica, sono stati 43 i cavalli afferiti presso il servizio per patologie diverse dall’addome acuto. I cavalli da cui è stato possibile prelevare un’adeguato quantitativo di feci (# 86) sono stati sottoposti ad esami coprologici, qualitativi e quantitativi. I dati ottenuti sono stati sottoposti ad analisi statistica descrittiva, al test del Chi quadrato e al test di Kuskall-Wallis rispettivamente per le prevalenze e i dati quantitativi, oltre ad una regressione logistica per evidenziare i fattori di rischio. Dai cavalli sottoposti a celiotomia è stato prelevato il contenuto intestinale per la raccolta dei parassiti adulti. Risultati: la prevalenza e l’abbondanza degli strongili è risultata significativamente minore nei cavalli sottoposti a chirurgia addominale rispetto al totale della popolazione presa in esame. Differenze significative di prevalenza sono state evidenziate anche tra i cavalli in colica medica e chirurgica. L’unico fattore di rischio evidenziato dall’analisi di regressione logistica è rappresentato dall’età per le sole coliche trattate chirurgicamente. Né strongili né ascaridi sembrano aumentare il rischio di colica. La probabilità di decesso aumenta significativamente in caso di colica chirurgica ma non è influenzata in alcun modo dalle infezioni parassitarie.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intestinal health is essential for the health of the body since the gastro-intestinal mucosa is the main site of interaction with the external environment, as well as the major area colonized by the microbiota. Intestinal health relies on proper barrier function, epithelial integrity and related mechanisms of protection (mucous layer, tight junctions, immune and inflammatory system). In pigs, during the weaning transition, intestinal inflammation and barrier integrity play a crucial role in regulating intestinal health and, consequently, pig’s health, growth and productivity. The aim of the project was to assess the impact of different nutritional strategies on the intestinal health of weaning piglets with reference to the inflammatory status and epithelial integrity. Therefore, in vivo trials were conducted to test the in-feed supplementation with zinc, tributyrin, or organic acids and nature-identical compounds (NIC) to weaning piglets. All the dietary interventions positively impacted the intestinal inflammatory status and, as a consequence, improved epithelial integrity by modulating tight junctions proteins (zinc or tributyrin) or by enhancing barrier properties measured with Ussing chambers (organic acids and NIC). These findings highlight that intestinal inflammation and barrier function are strictly linked, and that the control of inflammation is essential for adequate barrier function. In addition, in zinc trial and organic acids and NIC trial, better intestinal health could successfully result in better growth performance, as aimed for pig production improvement. To conclude, this work shows that dietary supplementation with bio-active substances such as zinc, tributyrin or organic acids and NIC may improve intestinal health of weaning piglets modulating intestinal inflammatory stress and barrier integrity and allowing better piglet’s health, growth and productivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il microbiota intestinale riveste un ruolo importantissimo nell’influenzare la salute dell’ospite. È stato dimostrato come la composizione della dieta possa condizionare lo stato di benessere dell’animale, inducendo importanti cambiamenti tra le popolazioni batteriche che coabitano l’intestino; l’uso di prebiotici rappresenta una delle strategie maggiormente impiegate per modulare positivamente la composizione ed il metabolismo dell’ecosistema gastroenterico. Il presente progetto di dottorato si è proposto di indagare gli effetti sul microbiota intestinale del cane e del gatto di diete a diverso tenore proteico e contenenti proteine di diversa digeribilità in presenza o meno di sostanze prebiotiche. Inoltre, sono stati valutati gli effetti della presenza di un estratto di Yucca schidigera e di tannini sulla microflora intestinale del gatto. In ultima istanza, sono state valutate le conseguenze di dosi crescenti di lattosio sul benessere intestinale del cane. I risultati del presente studio hanno rilevato come le sostanze prebiotiche influiscono sulla composizione e sul metabolismo della microflora del cane e del gatto, e come l’impiego di diete ricche di proteine possa avere conseguenze negative sull’ambiente intestinale. Tuttavia, la presenza di oligosaccaridi non sembra contrastare gli effetti negativi che diete ad alto tenore proteico potrebbero avere sull’ecosistema intestinale dell’animale. Nella successiva prova è stato evidenziato come l’inclusione nella dieta di estratti di Yucca e tannini possa contribuire a mitigare l’emanazione di sostanze maleodoranti dalle deiezioni degli animali da compagnia. Nel corso dell’ultima prova, nonostante non siano state osservate differenze tra le popolazioni microbiche intestinali, la somministrazione di dosi crescenti di lattosio ha indotto una certa riduzione delle fermentazioni proteolitiche microbiche. Ulteriori studi sono necessari per stabilire in che misura la dieta e gli alimenti “funzionali” possano influire sul microbiota intestinale del cane e del gatto e come queste informazioni possono essere utilizzate per migliorare miratamente l’alimentazione e lo stato di salute degli animali da compagnia.