5 resultados para inductive reasoning

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactive theorem provers (ITP for short) are tools whose final aim is to certify proofs written by human beings. To reach that objective they have to fill the gap between the high level language used by humans for communicating and reasoning about mathematics and the lower level language that a machine is able to “understand” and process. The user perceives this gap in terms of missing features or inefficiencies. The developer tries to accommodate the user requests without increasing the already high complexity of these applications. We believe that satisfactory solutions can only come from a strong synergy between users and developers. We devoted most part of our PHD designing and developing the Matita interactive theorem prover. The software was born in the computer science department of the University of Bologna as the result of composing together all the technologies developed by the HELM team (to which we belong) for the MoWGLI project. The MoWGLI project aimed at giving accessibility through the web to the libraries of formalised mathematics of various interactive theorem provers, taking Coq as the main test case. The motivations for giving life to a new ITP are: • study the architecture of these tools, with the aim of understanding the source of their complexity • exploit such a knowledge to experiment new solutions that, for backward compatibility reasons, would be hard (if not impossible) to test on a widely used system like Coq. Matita is based on the Curry-Howard isomorphism, adopting the Calculus of Inductive Constructions (CIC) as its logical foundation. Proof objects are thus, at some extent, compatible with the ones produced with the Coq ITP, that is itself able to import and process the ones generated using Matita. Although the systems have a lot in common, they share no code at all, and even most of the algorithmic solutions are different. The thesis is composed of two parts where we respectively describe our experience as a user and a developer of interactive provers. In particular, the first part is based on two different formalisation experiences: • our internship in the Mathematical Components team (INRIA), that is formalising the finite group theory required to attack the Feit Thompson Theorem. To tackle this result, giving an effective classification of finite groups of odd order, the team adopts the SSReflect Coq extension, developed by Georges Gonthier for the proof of the four colours theorem. • our collaboration at the D.A.M.A. Project, whose goal is the formalisation of abstract measure theory in Matita leading to a constructive proof of Lebesgue’s Dominated Convergence Theorem. The most notable issues we faced, analysed in this part of the thesis, are the following: the difficulties arising when using “black box” automation in large formalisations; the impossibility for a user (especially a newcomer) to master the context of a library of already formalised results; the uncomfortable big step execution of proof commands historically adopted in ITPs; the difficult encoding of mathematical structures with a notion of inheritance in a type theory without subtyping like CIC. In the second part of the manuscript many of these issues will be analysed with the looking glasses of an ITP developer, describing the solutions we adopted in the implementation of Matita to solve these problems: integrated searching facilities to assist the user in handling large libraries of formalised results; a small step execution semantic for proof commands; a flexible implementation of coercive subtyping allowing multiple inheritance with shared substructures; automatic tactics, integrated with the searching facilities, that generates proof commands (and not only proof objects, usually kept hidden to the user) one of which specifically designed to be user driven.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preferences are present in many real life situations but it is often difficult to quantify them giving a precise value. Sometimes preference values may be missing because of privacy reasons or because they are expensive to obtain or to produce. In some other situations the user of an automated system may have a vague idea of whats he wants. In this thesis we considered the general formalism of soft constraints, where preferences play a crucial role and we extended such a framework to handle both incomplete and imprecise preferences. In particular we provided new theoretical frameworks to handle such kinds of preferences. By admitting missing or imprecise preferences, solving a soft constraint problem becomes a different task. In fact, the new goal is to find solutions which are the best ones independently of the precise value the each preference may have. With this in mind we defined two notions of optimality: the possibly optimal solutions and the necessary optimal solutions, which are optimal no matter we assign a precise value to a missing or imprecise preference. We provided several algorithms, bases on both systematic and local search approaches, to find such kind of solutions. Moreover, we also studied the impact of our techniques also in a specific class of problems (the stable marriage problems) where imprecision and incompleteness have a specific meaning and up to now have been tackled with different techniques. In the context of the classical stable marriage problem we developed a fair method to randomly generate stable marriages of a given problem instance. Furthermore, we adapted our techniques to solve stable marriage problems with ties and incomplete lists, which are known to be NP-hard, obtaining good results both in terms of size of the returned marriage and in terms of steps need to find a solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il lavoro è una riflessione sugli sviluppi della nozione di definizione nel recente dibattito sull'analiticità. La rinascita di questa discussione, dopo le critiche di Quine e un conseguente primo abbandono della concezione convenzionalista carnapiana ha come conseguenza una nuova concezione epistemica dell'analiticità. Nella maggior parte dei casi le nuove teorie epistemiche, tra le quali quelle di Bob Hale e Crispin Wright (Implicit Definition and the A priori, 2001) e Paul Boghossian (Analyticity, 1997; Epistemic analyticity, a defence, 2002, Blind reasoning, 2003, Is Meaning Normative ?, 2005) presentano il comune carattere di intendere la conoscenza a priori nella forma di una definizione implicita (Paul Horwich, Stipulation, Meaning, and Apriority, 2001). Ma una seconda linea di obiezioni facenti capo dapprima a Horwich, e in seguito agli stessi Hale e Wright, mettono in evidenza rispettivamente due difficoltà per la definizione corrispondenti alle questioni dell'arroganza epistemica e dell'accettazione (o della stipulazione) di una definizione implicita. Da questo presupposto nascono diversi tentativi di risposta. Da un lato, una concezione della definizione, nella teoria di Hale e Wright, secondo la quale essa appare come un principio di astrazione, dall'altro una nozione della definizione come definizione implicita, che si richiama alla concezione di P. Boghossian. In quest'ultima, la definizione implicita è data nella forma di un condizionale linguistico (EA, 2002; BR, 2003), ottenuto mediante una fattorizzazione della teoria costruita sul modello carnapiano per i termini teorici delle teorie empiriche. Un'analisi attenta del lavoro di Rudolf Carnap (Philosophical foundations of Physics, 1966), mostra che la strategia di scomposizione rappresenta una strada possibile per una nozione di analiticità adeguata ai termini teorici. La strategia carnapiana si colloca, infatti, nell'ambito di un tentativo di elaborazione di una nozione di analiticità che tiene conto degli aspetti induttivi delle teorie empiriche

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last 60 years, computers and software have favoured incredible advancements in every field. Nowadays, however, these systems are so complicated that it is difficult – if not challenging – to understand whether they meet some requirement or are able to show some desired behaviour or property. This dissertation introduces a Just-In-Time (JIT) a posteriori approach to perform the conformance check to identify any deviation from the desired behaviour as soon as possible, and possibly apply some corrections. The declarative framework that implements our approach – entirely developed on the promising open source forward-chaining Production Rule System (PRS) named Drools – consists of three components: 1. a monitoring module based on a novel, efficient implementation of Event Calculus (EC), 2. a general purpose hybrid reasoning module (the first of its genre) merging temporal, semantic, fuzzy and rule-based reasoning, 3. a logic formalism based on the concept of expectations introducing Event-Condition-Expectation rules (ECE-rules) to assess the global conformance of a system. The framework is also accompanied by an optional module that provides Probabilistic Inductive Logic Programming (PILP). By shifting the conformance check from after execution to just in time, this approach combines the advantages of many a posteriori and a priori methods proposed in literature. Quite remarkably, if the corrective actions are explicitly given, the reactive nature of this methodology allows to reconcile any deviations from the desired behaviour as soon as it is detected. In conclusion, the proposed methodology brings some advancements to solve the problem of the conformance checking, helping to fill the gap between humans and the increasingly complex technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis is to develop a depth analysis of the inductive power transfer (or wireless power transfer, WPT) along a metamaterial composed of cells arranged in a planar configuration, in order to deliver power to a receiver sliding on them. In this way, the problem of the efficiency strongly affected by the weak coupling between emitter and receiver can be obviated, and the distance of transmission can significantly be increased. This study is made using a circuital approach and the magnetoinductive wave (MIW) theory, in order to simply explain the behavior of the transmission coefficient and efficiency from the circuital and experimental point of view. Moreover, flat spiral resonators are used as metamaterial cells, particularly indicated in literature for WPT metamaterials operating at MHz frequencies (5-30 MHz). Finally, this thesis presents a complete electrical characterization of multilayer and multiturn flat spiral resonators and, in particular, it proposes a new approach for the resistance calculation through finite element simulations, in order to consider all the high frequency parasitic effects. Multilayer and multiturn flat spiral resonators are studied in order to decrease the operating frequency down to kHz, maintaining small external dimensions and allowing the metamaterials to be supplied by electronic power converters (resonant inverters).