10 resultados para induced genes

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ferric uptake regulator protein Fur regulates iron-dependent gene expression in bacteria. In the human pathogen Helicobacter pylori, Fur has been shown to regulate iron-induced and iron-repressed genes. Herein we investigate the molecular mechanisms that control this differential iron-responsive Fur regulation. Hydroxyl radical footprinting showed that Fur has different binding architectures, which characterize distinct operator typologies. On operators recognized with higher affinity by holo-Fur, the protein binds to a continuous AT-rich stretch of about 20 bp, displaying an extended protection pattern. This is indicative of protein wrapping around the DNA helix. DNA binding interference assays with the minor groove binding drug distamycin A, point out that the recognition of the holo-operators occurs through the minor groove of the DNA. By contrast, on the apo-operators, Fur binds primarily to thymine dimers within a newly identified TCATTn10TT consensus element, indicative of Fur binding to one side of the DNA, in the major groove of the double helix. Reconstitution of the TCATTn10TT motif within a holo-operator results in a feature binding swap from an holo-Fur- to an apo-Fur-recognized operator, affecting both affinity and binding architecture of Fur, and conferring apo-Fur repression features in vivo. Size exclusion chromatography indicated that Fur is a dimer in solution. However, in the presence of divalent metal ions the protein is able to multimerize. Accordingly, apo-Fur binds DNA as a dimer in gel shift assays, while in presence of iron, higher order complexes are formed. Stoichiometric Ferguson analysis indicates that these complexes correspond to one or two Fur tetramers, each bound to an operator element. Together these data suggest that the apo- and holo-Fur repression mechanisms apparently rely on two distinctive modes of operator-recognition, involving respectively the readout of a specific nucleotide consensus motif in the major groove for apo-operators, and the recognition of AT-rich stretches in the minor groove for holo-operators, whereas the iron-responsive binding affinity is controlled through metal-dependent shaping of the protein structure in order to match preferentially the major or the minor groove.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apple consumption is highly recomended for a healthy diet and is the most important fruit produced in temperate climate regions. Unfortunately, it is also one of the fruit that most ofthen provoks allergy in atopic patients and the only treatment available up to date for these apple allergic patients is the avoidance. Apple allergy is due to the presence of four major classes of allergens: Mal d 1 (PR-10/Bet v 1-like proteins), Mal d 2 (Thaumatine-like proteins), Mal d 3 (Lipid transfer protein) and Mal d 4 (profilin). In this work new advances in the characterization of apple allergen gene families have been reached using a multidisciplinary approach. First of all, a genomic approach was used for the characterization of the allergen gene families of Mal d 1 (task of Chapter 1), Mal d 2 and Mal d 4 (task of Chapter 5). In particular, in Chapter 1 the study of two large contiguos blocks of DNA sequences containing the Mal d 1 gene cluster on LG16 allowed to acquire many new findings on number and orientation of genes in the cluster, their physical distances, their regulatory sequences and the presence of other genes or pseudogenes in this genomic region. Three new members were discovered co-localizing with the other Mal d 1 genes of LG16 suggesting that the complexity of the genetic base of allergenicity will increase with new advances. Many retrotranspon elements were also retrieved in this cluster. Due to the developement of molecular markers on the two sequences, the anchoring of the physical and the genetic map of the region has been successfully achieved. Moreover, in Chapter 5 the existence of other loci for the Thaumatine-like protein family in apple (Mal d 2.03 on LG4 and Mal d 2.02 on LG17) respect the one reported up to now was demonstred for the first time. Also one new locus for profilins (Mal d 4.04) was mapped on LG2, close to the Mal d 4.02 locus, suggesting a cluster organization for this gene family, as is well reported for Mal d 1 family. Secondly, a methodological approach was used to set up an highly specific tool to discriminate and quantify the expression of each Mal d 1 allergen gene (task of Chapter 2). In aprticular, a set of 20 Mal d 1 gene specific primer pairs for the quantitative Real time PCR technique was validated and optimized. As a first application, this tool was used on leaves and fruit tissues of the cultivar Florina in order to identify the Mal d 1 allergen genes that are expressed in different tissues. The differential expression retrieved in this study revealed a tissue-specificity for some Mal d 1 genes: 10/20 Mal d 1 genes were expressed in fruits and, indeed, probably more involved in the allergic reactions; while 17/20 Mal d 1 genes were expressed in leaves challenged with the fungus Venturia inaequalis and therefore probably interesting in the study of the plant defense mechanism. In Chapter 3 the specific expression levels of the 10 Mal d 1 isoallergen genes, found to be expressed in fruits, were studied for the first time in skin and flesh of apples of different genotypes. A complex gene expression profile was obtained due to the high gene-, tissue- and genotype-variability. Despite this, Mal d 1.06A and Mal d 1.07 expression patterns resulted particularly associated with the degree of allergenicity of the different cultivars. They were not the most expressed Mal d 1 genes in apple but here it was hypotized a relevant importance in the determination of allergenicity for both qualitative and quantitative aspects of the Mal d 1 gene expression levels. In Chapter 4 a clear modulation for all the 17 PR-10 genes tested in young leaves of Florina after challenging with the fungus V. inaequalis have been reported but with a peculiar expression profile for each gene. Interestingly, all the Mal d 1 genes resulted up-regulated except Mal d 1.10 that was down-regulated after the challenging with the fungus. The differences in direction, timing and magnitude of induction seem to confirm the hypothesis of a subfunctionalization inside the gene family despite an high sequencce and structure similarity. Moreover, a modulation of PR-10 genes was showed both in compatible (Gala-V. inaequalis) and incompatible (Florina-V. inaequalis) interactions contribute to validate the hypothesis of an indirect role for at least some of these proteins in the induced defense responses. Finally, a certain modulation of PR-10 transcripts retrieved also in leaves treated with water confirm their abilty to respond also to abiotic stress. To conclude, the genomic approach used here allowed to create a comprehensive inventory of all the genes of allergen families, especially in the case of extended gene families like Mal d 1. This knowledge can be considered a basal prerequisite for many further studies. On the other hand, the specific transcriptional approach make it possible to evaluate the Mal d 1 genes behavior on different samples and conditions and therefore, to speculate on their involvement on apple allergenicity process. Considering the double nature of Mal d 1 proteins, as apple allergens and as PR-10 proteins, the gene expression analysis upon the attack of the fungus created the base for unravel the Mal d 1 biological functions. In particular, the knowledge acquired in this work about the PR-10 genes putatively more involved in the specific Malus-V. inaequalis interaction will be helpful, in the future, to drive the apple breeding for hypo-allergenicity genotype without compromise the mechanism of response of the plants to stress conditions. For the future, the survey of the differences in allergenicity among cultivars has to be be thorough including other genotypes and allergic patients in the tests. After this, the allelic diversity analysis with the high and low allergenic cultivars on all the allergen genes, in particular on the ones with transcription levels correlated to allergencity, will provide the genetic background of the low ones. This step from genes to alleles will allow the develop of molecular markers for them that might be used to effectively addressed the apple breeding for hypo-allergenicity. Another important step forward for the study of apple allergens will be the use of a specific proteomic approach since apple allergy is a multifactor-determined disease and only an interdisciplinary and integrated approach can be effective for its prevention and treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grape berry is considered a non climacteric fruit, but there are some evidences that ethylene plays a role in the control of berry ripening. This PhD thesis aimed to give insights in the role of ethylene and ethylene-related genes in the regulation of grape berry ripening. During this study a small increase in ethylene concentration one week before véraison has been measured in Vitis vinifera L. ‘Pinot Noir’ grapes confirming previous findings in ‘Cabernet Sauvignon’. In addition, ethylene-related genes have been identified in the grapevine genome sequence. Similarly to other species, biosynthesis and ethylene receptor genes are present in grapevine as multi-gene families and their expression appeared tissue or developmental specific. All the other elements of the ethylene signal transduction cascade were also identified in the grape genome. Among them, there were ethylene response factors (ERF) which modulate the transcription of many effector genes in response to ethylene. In this study seven grapevine ERFs have been characterized and they showed tissue and berry development specific expression profiles. Two sequences, VvERF045 and VvERF063, seemed likely involved in berry ripening control due to their expression profiles and their sequence annotation. VvERF045 was induced before véraison and was specific of the ripe berry, by sequence similarity it was likely a transcription activator. VvERF063 displayed high sequence similarity to repressors of transcription and its expression, very high in green berries, was lowest at véraison and during ripening. To functionally characterize VvERF045 and VvERF063, a stable transformation strategy was chosen. Both sequences were cloned in vectors for over-expression and silencing and transferred in grape by Agrobacterium-mediated or biolistic-mediated gene transfer. In vitro, transgenic VvERF045 over-expressing plants displayed an epinastic phenotype whose extent was correlated to the transgene expression level. Four pathogen stress response genes were significantly induced in the transgenic plants, suggesting a putative function of VvERF045 in biotic stress defense during berry ripening. Further molecular analysis on the transgenic plants will help in identifying the actual VvERF045 target genes and together with the phenotypic characterization of the adult transgenic plants, will allow to extensively define the role of VvERF045 in berry ripening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first aims of this study were to demonstrate if mitochondrial biogenesis and senescence can be induced simultaneously in cell lines upon exposure to a genotoxic stress, and if the presence of mtDNA mutations which impair the functionality of respiratory complexes can influence the ability of a cell to activate senescence. The data obtained on the oncocytic model XTC.UC1 demonstrated that the presence of mitochondrial dysfunction is involved in the maintenance of a senescent phenotype induced by γ-rays treatment. The involvement of mTORC1 in the regulation of senescence has been shown in this cell line. On the other hand, in cells which do not present mitochondrial dysfunction it has been verified that genotoxic stress determines the activation of both mitochondrial biogenesis and senescence. Further studies are necessary in order to verify if mitochondrial biogenesis sustains the activation of senescence. The second aim of this thesis was to determine the involvement of mTORC1 in the regulation of PGC-1α expression, in order to verify what is the cause of the development of oncocytoma in patients affected by two hereditary cancer syndromes; Cowden and Birt-hogg-Dubé . The study of oncocytic tumors developed by patients affected by these syndromes suggested that the double heterozigosity of the two causative genes, PTEN and FLCN respectively, induce the activation of mTORC1 and therefore the activation of PGC-1α expression. On XTC.UC1 cell line, the most suitable in vitro model, experiments of complementation of PTEN and FLCN were conducted. To date, these results demonstrated that mTORC1 is not involved in the regulation of PGC-1α expression, and PTEN and FLCN seem to have opposite effect on PGC-1α expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cellular response to γ-rays is mediated by ATM-p53 axis. When p53 is phosphorylated, it can transactivate several genes to induce permanent cell cycle arrest (senescence) or apoptosis. Epithelial and mesenchymal cells are more resistant to radiation-induced apoptosis and respond mainly by activating senescence. Hence, tumor cells in a senescent state might remain as “dormant” malignant in fact through disruption of p53 function, cells may overcome growth arrest. Oncocytic features were acquired in the recurring neoplasia after radiation therapy in patient with colonrectal cancer. Oncocytic tumors are characterized by aberrant biogenesis and are mainly non-aggressive neoplasms. Their low proliferation degree can be explained by chronic destabilization of HIF1α, which presides to adaptation to hypoxia and also plays a pivotal role in hypoxia-related radio-resistance. The aim of the present thesis was to verify whether mitochondrial biogenesis can be induced following radiation treatment, in relation of HIF1α status and whether is predictive of a senescence response. In this study was demonstrate that mitochondrial biogenesis parameters like mitochondrial DNA copy number could be used for the prediction of hypoxic status of tissue after radiation treatment. γ-rays induce an increase of mitochondrial mass and function, in response to a genotoxic stress that pushes cells into senescence. Mitochondrial biogenesis is only indirectly regulated by p53, whose activation triggers a MDM2-mediated HIF1α degradation, leading to the release of PGC-1β inhibition by HIF1α. On the other hand, this protein blunts the mitochondrial response to γ-rays as well as the induction of p21-mediated cell senescence, indicating prevalence of the hypoxic over the genotoxic response. Finally in vivo, post-radiotherapy mtDNA copy number increase well correlates with lack of HIF1α increase in the tissue, concluding this may be a useful molecular tool to infer the trigger of a hypoxic response during radiotherapy, which may lead to failure of activation of senescence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid Alkalinization Factor (RALF) are cysteins-rich peptides ubiquitous in plant kingdom. They play multiple roles as hormone signals and recently their involvement in host-pathogen crosstalk as negative regulator of immunity in Arabidopsis has also been recognized. In addition, RALF homologue peptides are secreted by different fungal pathogens as effectors during early stages of infections. The aim of this work was to characterize RALF genes as susceptibility factors during plant pathogen interaction in strawberry. For this, the genomic organization of the RALF gene families in the octoploid strawberry (Fragaria × ananassa) and the re-annotated genome of Fragaria vesca were described , identifying 13 member in F. vesca (FvRALF) and 50 members in F. x ananassa (FaRALF). The changes in expression of fruit FaRALF genes was investigated upon infection with C.acutatum and B. cinerea showing that, among RALF genes expressed in fruit, FaRALF3 was the only one upregulated by fungal infection in the ripe stage. A role of FaRALF3 as susceptibility gene was then assessed trough Agrobacterium-mediated transient FaRALF3 overexpression and silencing in fruits, revealing that FaRALF3 expression promotes fungal growth and hyphae penetration in host tissues. In silico analysis was used to identify distinct pathogen inducible elements upstream of the FaRALF3 gene. Agroinfiltration of strawberry fruit with deletion constructs of the FaRALF3 promoter identified a 5’ region required for FaRALF3 expression in fruit, but failed to identify a region responsible for fungal induced expression. Furthermore, FaRALF3 and strawberry receptor FERONIA (FaMRLK47) were heterologously expressed in E. coli in order to purify active proteins forms and study RALF-FERONIA interaction in strawberry. However, it was not possible to obtain pure and active proteins. Finally RNAi transgenic plants silenced for the FvRALF13 gene were genotypically and phenotypically characterized suggesting a role of FvRALF13 in flowering time regulation and reproductive organs development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strawberry (Fragaria × ananassa) is an important soft fruit but easily to be infected by pathogens. Anthracnose and gray mold are two of the most destructive diseases of strawberry which lead to serious fruit rot. The first chapter introduced strawberry anthracnose caused by Colletotrichum acutatum. The infection strategy, disease cycle and management of C. acutatum on strawberry were reported. Likewise, the second chapter summarized the infection strategy of Botrytis cinerea and the defense responses of strawberry. As we already know white unripe strawberry fruits are more resistant to C. acutatum than red ripe fruits. During the interaction between strawberry white/red fruit and C. acutaum, a mannose binding lectin gene, FaMBL1, was found to be the most up-regulated gene and induced exclusively in white fruit. FaMBL1 belongs to the G-type lectin family which has important roles in plant development and defense process. To get insight into the role of FaMBL1, genome-wide identification was carried out on G-type lectin gene family in Fragaria vesca and the results were showed in chapter 3. G-type lectin genes make up a large family in F. vesca. Active expression upon biotic/abiotic stresses suggested a potential role of G-lectin genes in strawberry defenses. Hence, stable transgenic strawberry plants with FaMBL1 gene overexpressed were generated. Transformed strawberry plants were screened and identified. The results were showed in chapter 4, content of disease-related phytohormone, jasmonic acid, was found decreased in overexpressing lines compared with wild type (WT). Petioles inoculated by C. fioriniae of overexpressing lines had lower disease incidence than WT. Leaves of overexpressing lines challenged by B. cinerea showed remarkably smaller lesion diameters compared with WT. The chitinase 2-1 (FaChi2-1) showed higher expression in overexpressing lines than in WT during the interaction with B. cinerea, which could be related with the lower susceptibility of overexpressing lines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Topoisomerase I (Top1) poisons are among the most clinically-effective drugs used for colon, ovary and lung cancers. Unpublished data from our lab have recently revealed that the structurally-unrelated Top1 poisons, Camptothecin (CPT) and Indimitecan (LMP776), induce the formation of micronuclei (MNi) in human cancer cells. In addition, MNi trigger an innate immune gene response by stimulating the cGAS/STING pathway. As the mechanisms of MNi formation are not fully determined, our aim is here to establish how MNi form after Top1 poisoning. Using immunofluorescence assays and EdU labelling of nascent DNAs, our results show that, after 24 hours of recovery, a short treatment with sub-cytotoxic doses of Top1 poisons induces the formation of MNi that do not contain newly synthetized (EdU+) DNA. We also saw that Top1 poisons delay replication machinery reducing EdU incorporation and produce significant levels of the damage markers γH2AX and p53BP1 in S-phase cells but not in G1 and G2/M cells. The results also show that MNi formation is dependent on R-loops, as RNaseH1 overexpression markedly reduces Top1 induced MNi. Genome-wide mapping of R-loops by DRIP-seq technique revealed that R-loop levels are both decreased and increased by CPT. In particular, increased R-loops are mainly found at active genes and always overlapped with Top1cc sites. We also found that increased R-loops overlap with lamina-associated chromatin domains while decreased R-loops correlate with replication origin sites. Overall, our data are consistent with the formation of MNi due to R-loop increase and under-replication at specific regions caused by Top1 poisons. These results will eventually help in developing new strategies for effective personalized interventions by using Top1-targeted compounds as immuno-modulators in cancer patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Induced mutagenesis has been exploited for crop improvement and for investigating gene function and regulation. To unravel molecular mechanisms of stress resilience, we applied state-of-the-art genomics-based gene cloning methods to barley mutant lines showing altered root and shoot architecture and disease lesion mimic phenotypes. With a novel method that we named complementation by sequencing, we cloned NEC3, the causal gene for an orange-spotted disease lesion mimic phenotype. NEC3 belongs to the CYP71P1 gene family and it is involved in serotonin biosynthesis. By comparative phylogenetic analysis we showed that CYP71P1 emerged early in angiosperm evolution but was lost in some lineages including Arabidopsis thaliana. By BSA-Seq, we cloned the gene whose mutation increased leaf width, and we showed that the gene corresponded to the previously cloned BROADLEAF1. By BSA coupled to WGS sequencing, we cloned EGT1 and EGT2, two genes that regulate root gravitropic set point angle. EGT1 encodes a Tubby-like F-box protein and EGT2 encodes a Sterile Alpha Motive protein; EGT2 is phylogenetically related to AtSAM5 in Arabidopsis and to WEEP in peach where it regulates branch angle. Both EGT1 and EGT2 are conserved in wheat. We hypothesized that both participate to an anti-gravitropic offset mechanism since their disruption causes mutant roots to grow along the gravity vector. By the MutMap+ method, we cloned the causal gene of a short and semi-rigid root mutant and found that it encodes for an endoglucanase and is the ortholog of OsGLU3 in rice whose mutant has the same phenotype, suggesting that the gene is conserved in barley and rice. The mutants and the corresponding genes which were cloned in this work are involved in the response to stress and can potentially contribute to crop adaptation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HER2 overexpression is observed in 20-30% of invasive breast carcinomas and it is correlated with poor prognosis. Although targeted therapies have revolutionized the treatment of HER2-positive breast cancer, a high number of patients presented primary or acquired resistance to monoclonal antibodies and tyrosine kinase inhibitors. Tumor heterogenicity, epithelial to mesenchymal transition (EMT) and cancer stem cells are key factors in target therapy resistance and tumor progression. The aim of this project was to discover alternative therapeutic strategies to over-come tumor resistance by harnessing immune system and looking for new targetable molecules. The results reported introduce a virus-like particles-based vaccine against HER2 as promising therapeutic approach to treat HER2-positive tumors. The high and persistent anti-HER2 antibody titers elicited by the vaccine significantly inhibited tumor growth and metastases onset. Furthermore, the polyclonal response induced by the vaccine also inhibited human HER2-positive breast cancer cells resistant to trastuzumab in vitro, suggesting its efficacy also on trastuzumab resistant tumors. To identify new therapeutic targets to treat progressed breast cancer, we took advantage from a dynamic model of HER2 expression obtained in our laboratory, in which HER2 loss and cancer progression were associated with the acquisition of EMT and stemness features. Targeting EMT-involved molecules, such as PDGFR-β, or the induction of epithelial markers, like E-cadherin, proved to be successful strategy to impair HER2-negative tumor growth. Density alterations, which might be induced by anti-HER2 target therapies, in cell culture condition of a cell line with a labile HER2 expression, caused HER2 loss probably as consequence of more aggressive subpopulations which prevail over the others. These subpopulations showed an increased EMT and stemness profile, confirming that targeting EMT-involved molecules or antigen expressed by cancer stem cells together with anti-HER2 target therapies is a valid strategy to inhibit HER2-positive cells and simultaneously prevent selection of more aggressive clone.