2 resultados para indoor surveillance
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Terrestrial radioactivity for most individual is the major contributor to the total dose and is mostly provided by 238U, 232Th and 40K radionuclides. In particular indoor radioactivity is principally due to 222Rn, a radioactive noble gas descendent of 238U, second cause of lung cancer after cigarettes smoking. Vulsini Volcanic District is a well known quaternary volcanic area located between the northern Latium and southern Tuscany (Central Italy). It is characterized by an high natural radiation background resulting from the high concentrations of 238U, 232Th and 40K in the volcanic products. In this context, subduction-related metasomatic enrichment of incompatible elements in the mantle source coupled with magma differentiation within the upper crust has given rise to U, Th and K enriched melts. Almost every ancient village and town located in this part of Italy has been built with volcanic rocks pertaining to the Vulsini Volcanic District. The radiological risk of living in this area has been estimated considering separately: a. the risk associated with buildings made of volcanic products and built on volcanic rock substrates b. the risk associated to soil characteristics. The former has been evaluated both using direct 222Rn indoor measurements and simulations of “standard rooms” built with the tuffs and lavas from the Vulsini Volcanic District investigated in this work. The latter has been carried out by using in situ measurements of 222Rn activity in the soil gases. A radon risk map for the Bolsena village has been developed using soil radon measurements integrating geological information. Data of airborne radioactivity in ambient aerosol at two elevated stations in Emilia Romagna (North Italy) under the influence of Fukushima plume have been collected, effective doses have been calculated and an extensive comparison between doses associated with artificial and natural sources in different area have been described and discussed.
Resumo:
Detection, localization and tracking of non-collaborative objects moving inside an area is of great interest to many surveillance applications. An ultra- wideband (UWB) multistatic radar is considered as a good infrastructure for such anti-intruder systems, due to the high range resolution provided by the UWB impulse-radio and the spatial diversity achieved with a multistatic configuration. Detection of targets, which are typically human beings, is a challenging task due to reflections from unwanted objects in the area, shadowing, antenna cross-talks, low transmit power, and the blind zones arised from intrinsic peculiarities of UWB multistatic radars. Hence, we propose more effective detection, localization, as well as clutter removal techniques for these systems. However, the majority of the thesis effort is devoted to the tracking phase, which is an essential part for improving the localization accuracy, predicting the target position and filling out the missed detections. Since UWB radars are not linear Gaussian systems, the widely used tracking filters, such as the Kalman filter, are not expected to provide a satisfactory performance. Thus, we propose the Bayesian filter as an appropriate candidate for UWB radars. In particular, we develop tracking algorithms based on particle filtering, which is the most common approximation of Bayesian filtering, for both single and multiple target scenarios. Also, we propose some effective detection and tracking algorithms based on image processing tools. We evaluate the performance of our proposed approaches by numerical simulations. Moreover, we provide experimental results by channel measurements for tracking a person walking in an indoor area, with the presence of a significant clutter. We discuss the existing practical issues and address them by proposing more robust algorithms.