2 resultados para in vivo model
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Citokines are proteins produced by several cell types and secreted in response to various stimuli. These molecules are able to modify the behaviour of other cells inducing activities like growth, differentiation and apoptosis. In the last years, veterinary scientists have investigated the role played by these factors; in fact, cytokines can act as intercellular communicative signals in immune response, cell damage repair and hematopoiesis. Up to date, various cytokines have been identified and in depth comprehension of their effects in physiology, pathology and therapy is an interesting field of research. This thesis aims to understand the role played by these mediators during natural or experimentally induced pathologies. In particular, it has been evaluated the genic and protein expressions of a large number of cytokines during several diseases and starting from different matrix. Considering the heterogeneity of materials used in experimentations, multiple methods and protocols of nucleic acids and proteins extractions have been standardized. Results on cytokines expression obtained from various in vitro and in vivo experimental studies have shown how important these mediators are in regulation and modulation of the host immune response also in veterinary medicine. In particular, the analysis of inflammatory and septic markers, like cytokines, has allowed a better understanding in the pathogenesis during horse Recurrent Airway Obstruction, foal sepsis, Bovine Viral Diarrhea Virus infection and dog Parvovirus infection and the effects of these agents on the host immune system. As experimentations with mice have shown, some pathologies of the respiratory and nervous system can be reduced or even erased by blocking cytokines inflammatory production. The in vitro cytokines expression evaluation in cells which are in vivo involved in the response to exogenous (like pathogens) or endogenous (as it happens during autoimmune diseases) inflammatory stimuli could represent a model for studying citokines effects during the host immune response. This has been analyzed using lymphocytes cultured with several St. aureus strains isolated from bovine mastitic milk and different colostrum products. In the first experiment different cytokines were expressed depending on enterotoxins produced, justifying a different behaviour of the microrganism in the mammal gland. In the second one, bone marrow cells derived incubated with murine lymphocytes with colostrum products have shown various cluster of differentiation expression , different proliferation and a modified cytokines profile. A better understanding of cytokine expression mechanisms will increase the know-how on immune response activated by several pathogen agents. In particular, blocking the cytokine production, the inhibition or catalyzation of the receptor binding mechanism and the modulation of signal transduction mechanism will represent a novel therapeutic strategy in veterinary medicine.
Resumo:
Abstract The aim of this work was the development of a murine model of septic arthrosynovitis and osteomyelitis caused by Staphylococcus aureus, which could mimic the natural disease occurring in humans and which could be suitable for testing preventive and therapeutic interventions. This model could be particularly useful since S. aureus-mediated joints and bones infections are relevant in humans, both in terms of frequency and severity. Our attention focused in tracking bacterial infiltration in joints and bones over time using different microbiological and hystopathological tools, which allowed us to have a complete overview of the situation and to evaluate the immunological actions undertaken by the host to contain or eradicate the bacterial infection. Antibodies and cytokines profiles, as well as recruitment of host immune cells at joints of immunized and infected mice were therefore monitored for a time period that allowed us to study both the acute and the chronic phases of the disease in situ. Finally the Novartis vaccine formulation proposed against S. aureus infections was tested for its capacity to protect immunized mice from joints infections, and the preventive immunization was compared to a standard antibiotic prophylaxis. The availability of powerful tools to study specific bacterial-mediated diseases is nowadays an important requirement for the scientific community to shed light on the complex interactions between host and pathogens and to test treatments for preventing or contrasting infections. We believe that our work significantly contributes to the overall knowledge in the field of S. aureus-dependent pathologies, opening the possibility for further investigations in several fields of study.