4 resultados para in vitro drug release
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The β-Amyloid (βA) peptide is the major component of senile plaques that are one of the hallmarks of Alzheimer’s Disease (AD). It is well recognized that Aβ exists in multiple assembly states, such as soluble oligomers or insoluble fibrils, which affect neuronal viability and may contribute to disease progression. In particular, common βA-neurotoxic mechanisms are Ca2+ dyshomeostasis, reactive oxygen species (ROS) formation, altered signaling, mitochondrial dysfunction and neuronal death such as necrosis and apoptosis. Recent study shows that the ubiquitin-proteasome pathway play a crucial role in the degradation of short-lived and regulatory proteins that are important in a variety of basic and pathological cellular processes including apoptosis. Guanosine (Guo) is a purine nucleoside present extracellularly in brain that shows a spectrum of biological activities, both under physiological and pathological conditions. Recently it has become recognized that both neurons and glia also release guanine-based purines. However, the role of Guo in AD is still not well established. In this study, we investigated the machanism basis of neuroprotective effects of GUO against Aβ peptide-induced toxicity in neuronal (SH-SY5Y), in terms of mitochondrial dysfunction and translocation of phosphatidylserine (PS), a marker of apoptosis, using MTT and Annexin-V assay, respectively. In particular, treatment of SH-SY5Y cells with GUO (12,5-75 μM) in presence of monomeric βA25-35 (neurotoxic core of Aβ), oligomeric and fibrillar βA1-42 peptides showed a strong dose-dependent inhibitory effects on βA-induced toxic events. The maximum inhibition of mitochondrial function loss and PS translocation was observed with 75 μM of Guo. Subsequently, to investigate whether neuroprotection of Guo can be ascribed to its ability to modulate proteasome activity levels, we used lactacystin, a specific inhibitor of proteasome. We found that the antiapoptotic effects of Guo were completely abolished by lactacystin. To rule out the possibility that this effects resulted from an increase in proteasome activity by Guo, the chymotrypsin-like activity was assessed employing the fluorogenic substrate Z-LLL-AMC. The treatment of SH-SY5Y with Guo (75 μM for 0-6 h) induced a strong increase, in a time-dependent manner, of proteasome activity. In parallel, no increase of ubiquitinated protein levels was observed at similar experimental conditions adopted. We then evaluated an involvement of anti and pro-apoptotic proteins such as Bcl-2, Bad and Bax by western blot analysis. Interestingly, Bax levels decreased after 2 h treatment of SH-SY5Y with Guo. Taken together, these results demonstrate that Guo neuroprotective effects against βA-induced apoptosis are mediated, at least partly, via proteasome activation. In particular, these findings suggest a novel neuroprotective pathway mediated by Guo, which involves a rapid degradation of pro-apoptotic proteins by the proteasome. In conclusion, the present data, raise the possibility that Guo could be used as an agent for the treatment of AD.
Resumo:
Microglial involvement in neurological disorders is well-established, being microglial activation not only associated with neurotoxic consequences, but also with neuroprotective effects. The studies presented here, based on microglia rat primary cell cultures and mainly on microglial conditioned medium (MCM), show insights into the mechanism of Superoxide dismutase 1 (SOD1) and Apolipoprotein E (ApoE) secretion by microglia as well as their neuroprotective effect towards primary cerebellar granule neurons (CGNs) exposed to the dopaminergic toxin 6-hydroxydopamine (6-OHDA). SOD1 and ApoE are released respectively through non-classical lysosomal or the classical ER/Golgi-mediated secretion pathway. Microglial conditioned medium, in which SOD1 and ApoE accumulated, protected CGNs from degeneration and these effects were replicated when exogenous SOD1 or ApoE was added to a non-conditioned medium. SOD1 neuroprotective action was mediated by increased cell calcium from an external source. ApoE release is negatively affected by microglia activation, both with lipopolysaccharide (LPS) and Benzoylbenzoyl-ATP (Bz-ATP) but is stimulated by neuronal-conditioned medium as well as in microglia-neurons co-culture conditions. This neuronal-stimulated microglial ApoE release is differently regulated by activation states (i.e. LPS vs ATP) and by 6-hydroxydopamine-induced neurodegeneration. In co-culture conditions, microglial ApoE release is essential for neuroprotection, since microglial ApoE silencing through siRNA abrogated protection of cerebellar granule neurons against 6-OHDA toxicity. Therefore, these molecules could represent a target for manipulation aimed at promoting neuroprotection in brain diseases. Considering a pathological context, and the microglial ability to adopt a neuroprotective or neurotoxic profile, we characterize the microglial M1/M2 phenotype in transgenic rats (McGill-R-Thy1-APP) which reproduce extensively the Alzheimer’s-like amyloid pathology. Here, for the first time, cortical, hippocampal and cerebellar microglia of wild type and transgenic adult rats were compared, at both early and advanced stages of the pathology. In view of possible therapeutic translations, these findings are relevant to test microglial neuroprotection, in animal models of neurodegenerative diseases.
Resumo:
Bone remodelling is a fundamental mechanism for removing and replacing bone during adaptation of the skeleton to mechanical loads. Skeletal unloading leads to severe hypoxia (1%O2) in the bone microenvironment resulting in imbalanced bone remodelling that favours bone resorption. Hypoxia, in vivo, is a physiological condition for osteocytes, 5% O2 is more likely physiological for osteocytes than 20% O2, as osteocytes are embedded deep inside the mineralized bone matrix. Osteocytes are thought to be the mechanosensors of bone and have been shown to orchestrate bone formation and resorption. Oxygen-deprived osteocytes seem undergo apoptosis and actively stimulate osteoclasts. Hypoxia and oxidative stress increase 150-kDa oxygen-regulated protein (ORP 150) expression in different cell types. It is a novel endoplasmic-reticulum-associated chaperone induced by hypoxia/ischemia. It well known that ORP 150 plays an important role in the cellular adaptation to hypoxia, as anti-apoptotic factor, and seems to be involved in osteocytes differentiations. The aims of the present study are 1) to determine the cellular and molecular response of the osteocytes at two different conditions of oxygen deprivation, 1% and 5% of O2 compared to the atmospheric oxygen concentration at several time points. 2) To clarify the role of hypoxic osteocytes in bone homeostasis through the detection of releasing of soluble factors (RANKL, OPG, PGE2 and Sclerostin). 3) To detect the activation of osteoclast and osteoblast induced by condition media collected from hypoxic and normoxic osteocytes. The data obtained in this study shows that hypoxia compromises the viability of osteocytes and induces apoptosis. Unlike in other cells types, ORP 150 in MLO-Y4 does not seem to be regulated early during hypoxia. The release of soluble factors and the evaluation of osteoclast and osteoblast activation shows that osteocytes, grown under severe oxygen deprivation, play a role in the regulation of both bone resorption and bone formation.
Resumo:
I prioni, privi di acidi nucleici, esistono come ceppi e possono mutare, in particolare quando attraversano una barriera di specie. Numerosi studi convergono sulla conclusione che le caratteristiche ceppo-specifiche siano inscritte nella conformazione della PrPSc, con la variabilità di ceppo associata a varianti conformazionali della PrPSc. In questo studio ci siamo avvalsi del PMCA, tecnica che riproduce in vitro molti aspetti della biologia dei prioni, per mettere a punto condizioni sperimentali di replicazione che permettessero di osservare fenomeni di mutazione e selezione, onde investigare i meccanismi molecolari e di popolazione alla base della mutabilità dei prioni. In condizioni di replicazione eterologa, che mima la trasmissione tra diverse specie, è stato inizialmente possibile identificare un mutante difettivo della scrapie, caratterizzato da una diversa conformazione della PrPSc e capace di replicare in vitro ma non più in vivo. Le condizioni in cui tale mutante è emerso hanno permesso di sviluppare ulteriori ipotesi di lavoro, basate sul concetto della quasi-specie. Impartendo diversi regimi di replicazione e seguendo l’evoluzione di due ceppi, è stato possibile evidenziare fenomeni di mutazione anche in condizioni di replicazione omologa, in assenza di forti pressioni selettive. In entrambi i ceppi sono emerse varianti conformazionali di PrPSc durante passaggi replicativi ad ampia popolazione, mentre le popolazioni sottoposte a ripetuti colli di bottiglia hanno mostrato un rapido declino del tasso di replicazione. Sono stati infine investigati l’efficacia e il potenziale mutageno di molecole anti-prioniche, ottenendo importanti risultati preliminari sull’efficacia di molecole che legano la PrPC. Questi risultati evidenziano come la mutabilità sia una caratteristica intrinseca dei prioni e supportano l’idea che i prioni siano molto variabili, similmente alle quasi-specie virali, e perciò adattabili e proni a fenomeni di mutazione e selezione. Tali conclusioni hanno impatto su problematiche sanitarie quali lo studio del potenziale zoonotico e i fenomeni di farmaco-resistenza dei prioni.