10 resultados para implicit relations of spatial neighborhood
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Acculturation processes and intergroup relations lie at the heart of developing more inclusive social attitudes. Notably, these endeavors are embedded in primary socialization contexts of adolescents, as indicated by developmental and socio-psychological theoretical models reviewed in Chapter 1. Hence, this dissertation investigated how adolescents' acculturation processes and intergroup contact are embedded in family, peer, and school contexts. Accordingly, Chapter 2 indicated the combined effects of the perceived parents' acculturation orientations and classmates' acculturation preferences on adolescents' own acculturation orientations in Italy and Turkey. Chapter 3 showed that adolescents could be classified into one of four latent growth trajectory classes (i.e., ethnic-oriented, national-oriented, dual, and marginalized identities), which could be predicted by social identification with family and classmates. Chapter 4 highlighted that adolescents' cross-ethnic friendships mediated the positive associations of parents' cross-ethnic friendships with adolescents' psychological and social adjustment beyond the positive relationships between parents' and adolescents' friendships. Multiple studies conducted in Chapter 5 confirmed that a newly developed questionnaire (i.e., ICIS-Short Version) is a reliable tool to measure positive and negative contact among ethnic minority and majority adolescents. Chapter 6 revealed that teachers' equal treatment increased positive and decreased negative contact among ethnic minority and majority adolescents. Moreover, Chapter 7 indicated that adolescents’ positive and negative contact in the school context were related over time to higher corresponding positive and negative contact in out-of-school contexts and vice versa, while their positive contact in the school context was linked over time to lower levels of negative contact in the out-of-school contexts. Eventually, Chapter 8 strived to summarize and discuss these findings in light of social inclusivity. Overall, this dissertation tapped into the paramount importance of family, peer, and school contexts to provide a unique resource for adolescents to cope with acculturative challenges that go beyond the normative developmental tasks of adolescence.
Resumo:
This dissertation aims to contribute to the discourse on the governance of smart cities (SC) by examining the collaborative relationships between various actors involved in developing and implementing SC initiatives. Poorly organized collaboration can lead to conflicts and misunderstandings, resulting in failures in realizing such complex technological initiatives. Hence, capturing the main elements of SC collaboration becomes essential for understanding how they should be developed and managed. However, the topic has been limitedly explored in prior research, with fragmented studies on narrow aspects related to the SC governance. Using Russia as an empirical setting, the study focuses on the interplay of both government and non-governmental stakeholders in constructing collaborative relationships within SC, covering both vertical and horizontal dimensions of their interaction. The overarching goal of this research is to understand how collaborative governance unfolds in the SC context by stating two guiding research questions: 1) who are the dominant actors in SC and what are their roles? 2) what are the relationships forged among them? The dissertation investigates the SC initiatives across three different cities – Moscow, Saint Petersburg, and Perm – in a format of empirical illustration as well as an in-depth case study. The dissertation provides three main contributions. First, it strengthens the link between the SC domain, public governance, and literature on cross-sectoral collaboration by highlighting ‘urban smartness’ as a source for generating multiple values. Second, the thesis offers novel view on the strategic development paths which conceptually shape the SC framework. It connects the techno-centric and human-centric perspectives of SC by showing that they are naturally linked, rather than mutually exclusive. Third, the study illustrates that SC initiatives are contextually dependent, and this dependence covers specificities of public governance, including underlying informal mechanisms, which influence the inception, development, and management of SC in the organizational realms.
Resumo:
The presented study carried out an analysis on rural landscape changes. In particular the study focuses on the understanding of driving forces acting on the rural built environment using a statistical spatial model implemented through GIS techniques. It is well known that the study of landscape changes is essential for a conscious decision making in land planning. From a bibliography review results a general lack of studies dealing with the modeling of rural built environment and hence a theoretical modelling approach for such purpose is needed. The advancement in technology and modernity in building construction and agriculture have gradually changed the rural built environment. In addition, the phenomenon of urbanization of a determined the construction of new volumes that occurred beside abandoned or derelict rural buildings. Consequently there are two types of transformation dynamics affecting mainly the rural built environment that can be observed: the conversion of rural buildings and the increasing of building numbers. It is the specific aim of the presented study to propose a methodology for the development of a spatial model that allows the identification of driving forces that acted on the behaviours of the building allocation. In fact one of the most concerning dynamic nowadays is related to an irrational expansion of buildings sprawl across landscape. The proposed methodology is composed by some conceptual steps that cover different aspects related to the development of a spatial model: the selection of a response variable that better describe the phenomenon under study, the identification of possible driving forces, the sampling methodology concerning the collection of data, the most suitable algorithm to be adopted in relation to statistical theory and method used, the calibration process and evaluation of the model. A different combination of factors in various parts of the territory generated favourable or less favourable conditions for the building allocation and the existence of buildings represents the evidence of such optimum. Conversely the absence of buildings expresses a combination of agents which is not suitable for building allocation. Presence or absence of buildings can be adopted as indicators of such driving conditions, since they represent the expression of the action of driving forces in the land suitability sorting process. The existence of correlation between site selection and hypothetical driving forces, evaluated by means of modeling techniques, provides an evidence of which driving forces are involved in the allocation dynamic and an insight on their level of influence into the process. GIS software by means of spatial analysis tools allows to associate the concept of presence and absence with point futures generating a point process. Presence or absence of buildings at some site locations represent the expression of these driving factors interaction. In case of presences, points represent locations of real existing buildings, conversely absences represent locations were buildings are not existent and so they are generated by a stochastic mechanism. Possible driving forces are selected and the existence of a causal relationship with building allocations is assessed through a spatial model. The adoption of empirical statistical models provides a mechanism for the explanatory variable analysis and for the identification of key driving variables behind the site selection process for new building allocation. The model developed by following the methodology is applied to a case study to test the validity of the methodology. In particular the study area for the testing of the methodology is represented by the New District of Imola characterized by a prevailing agricultural production vocation and were transformation dynamic intensively occurred. The development of the model involved the identification of predictive variables (related to geomorphologic, socio-economic, structural and infrastructural systems of landscape) capable of representing the driving forces responsible for landscape changes.. The calibration of the model is carried out referring to spatial data regarding the periurban and rural area of the study area within the 1975-2005 time period by means of Generalised linear model. The resulting output from the model fit is continuous grid surface where cells assume values ranged from 0 to 1 of probability of building occurrences along the rural and periurban area of the study area. Hence the response variable assesses the changes in the rural built environment occurred in such time interval and is correlated to the selected explanatory variables by means of a generalized linear model using logistic regression. Comparing the probability map obtained from the model to the actual rural building distribution in 2005, the interpretation capability of the model can be evaluated. The proposed model can be also applied to the interpretation of trends which occurred in other study areas, and also referring to different time intervals, depending on the availability of data. The use of suitable data in terms of time, information, and spatial resolution and the costs related to data acquisition, pre-processing, and survey are among the most critical aspects of model implementation. Future in-depth studies can focus on using the proposed model to predict short/medium-range future scenarios for the rural built environment distribution in the study area. In order to predict future scenarios it is necessary to assume that the driving forces do not change and that their levels of influence within the model are not far from those assessed for the time interval used for the calibration.
Resumo:
The intensity of regional specialization in specific activities, and conversely, the level of industrial concentration in specific locations, has been used as a complementary evidence for the existence and significance of externalities. Additionally, economists have mainly focused the debate on disentangling the sources of specialization and concentration processes according to three vectors: natural advantages, internal, and external scale economies. The arbitrariness of partitions plays a key role in capturing these effects, while the selection of the partition would have to reflect the actual characteristics of the economy. Thus, the identification of spatial boundaries to measure specialization becomes critical, since most likely the model will be adapted to different scales of distance, and be influenced by different types of externalities or economies of agglomeration, which are based on the mechanisms of interaction with particular requirements of spatial proximity. This work is based on the analysis of the spatial aspect of economic specialization supported by the manufacturing industry case. The main objective is to propose, for discrete and continuous space: i) a measure of global specialization; ii) a local disaggregation of the global measure; and iii) a spatial clustering method for the identification of specialized agglomerations.
Resumo:
The treatment of the Cerebral Palsy (CP) is considered as the “core problem” for the whole field of the pediatric rehabilitation. The reason why this pathology has such a primary role, can be ascribed to two main aspects. First of all CP is the form of disability most frequent in childhood (one new case per 500 birth alive, (1)), secondarily the functional recovery of the “spastic” child is, historically, the clinical field in which the majority of the therapeutic methods and techniques (physiotherapy, orthotic, pharmacologic, orthopedic-surgical, neurosurgical) were first applied and tested. The currently accepted definition of CP – Group of disorders of the development of movement and posture causing activity limitation (2) – is the result of a recent update by the World Health Organization to the language of the International Classification of Functioning Disability and Health, from the original proposal of Ingram – A persistent but not unchangeable disorder of posture and movement – dated 1955 (3). This definition considers CP as a permanent ailment, i.e. a “fixed” condition, that however can be modified both functionally and structurally by means of child spontaneous evolution and treatments carried out during childhood. The lesion that causes the palsy, happens in a structurally immature brain in the pre-, peri- or post-birth period (but only during the firsts months of life). The most frequent causes of CP are: prematurity, insufficient cerebral perfusion, arterial haemorrhage, venous infarction, hypoxia caused by various origin (for example from the ingestion of amniotic liquid), malnutrition, infection and maternal or fetal poisoning. In addition to these causes, traumas and malformations have to be included. The lesion, whether focused or spread over the nervous system, impairs the whole functioning of the Central Nervous System (CNS). As a consequence, they affect the construction of the adaptive functions (4), first of all posture control, locomotion and manipulation. The palsy itself does not vary over time, however it assumes an unavoidable “evolutionary” feature when during growth the child is requested to meet new and different needs through the construction of new and different functions. It is essential to consider that clinically CP is not only a direct expression of structural impairment, that is of etiology, pathogenesis and lesion timing, but it is mainly the manifestation of the path followed by the CNS to “re”-construct the adaptive functions “despite” the presence of the damage. “Palsy” is “the form of the function that is implemented by an individual whose CNS has been damaged in order to satisfy the demands coming from the environment” (4). Therefore it is only possible to establish general relations between lesion site, nature and size, and palsy and recovery processes. It is quite common to observe that children with very similar neuroimaging can have very different clinical manifestations of CP and, on the other hand, children with very similar motor behaviors can have completely different lesion histories. A very clear example of this is represented by hemiplegic forms, which show bilateral hemispheric lesions in a high percentage of cases. The first section of this thesis is aimed at guiding the interpretation of CP. First of all the issue of the detection of the palsy is treated from historical viewpoint. Consequently, an extended analysis of the current definition of CP, as internationally accepted, is provided. The definition is then outlined in terms of a space dimension and then of a time dimension, hence it is highlighted where this definition is unacceptably lacking. The last part of the first section further stresses the importance of shifting from the traditional concept of CP as a palsy of development (defect analysis) towards the notion of development of palsy, i.e., as the product of the relationship that the individual however tries to dynamically build with the surrounding environment (resource semeiotics) starting and growing from a different availability of resources, needs, dreams, rights and duties (4). In the scientific and clinic community no common classification system of CP has so far been universally accepted. Besides, no standard operative method or technique have been acknowledged to effectively assess the different disabilities and impairments exhibited by children with CP. CP is still “an artificial concept, comprising several causes and clinical syndromes that have been grouped together for a convenience of management” (5). The lack of standard and common protocols able to effectively diagnose the palsy, and as a consequence to establish specific treatments and prognosis, is mainly because of the difficulty to elevate this field to a level based on scientific evidence. A solution aimed at overcoming the current incomplete treatment of CP children is represented by the clinical systematic adoption of objective tools able to measure motor defects and movement impairments. A widespread application of reliable instruments and techniques able to objectively evaluate both the form of the palsy (diagnosis) and the efficacy of the treatments provided (prognosis), constitutes a valuable method able to validate care protocols, establish the efficacy of classification systems and assess the validity of definitions. Since the ‘80s, instruments specifically oriented to the analysis of the human movement have been advantageously designed and applied in the context of CP with the aim of measuring motor deficits and, especially, gait deviations. The gait analysis (GA) technique has been increasingly used over the years to assess, analyze, classify, and support the process of clinical decisions making, allowing for a complete investigation of gait with an increased temporal and spatial resolution. GA has provided a basis for improving the outcome of surgical and nonsurgical treatments and for introducing a new modus operandi in the identification of defects and functional adaptations to the musculoskeletal disorders. Historically, the first laboratories set up for gait analysis developed their own protocol (set of procedures for data collection and for data reduction) independently, according to performances of the technologies available at that time. In particular, the stereophotogrammetric systems mainly based on optoelectronic technology, soon became a gold-standard for motion analysis. They have been successfully applied especially for scientific purposes. Nowadays the optoelectronic systems have significantly improved their performances in term of spatial and temporal resolution, however many laboratories continue to use the protocols designed on the technology available in the ‘70s and now out-of-date. Furthermore, these protocols are not coherent both for the biomechanical models and for the adopted collection procedures. In spite of these differences, GA data are shared, exchanged and interpreted irrespectively to the adopted protocol without a full awareness to what extent these protocols are compatible and comparable with each other. Following the extraordinary advances in computer science and electronics, new systems for GA no longer based on optoelectronic technology, are now becoming available. They are the Inertial and Magnetic Measurement Systems (IMMSs), based on miniature MEMS (Microelectromechanical systems) inertial sensor technology. These systems are cost effective, wearable and fully portable motion analysis systems, these features gives IMMSs the potential to be used both outside specialized laboratories and to consecutive collect series of tens of gait cycles. The recognition and selection of the most representative gait cycle is then easier and more reliable especially in CP children, considering their relevant gait cycle variability. The second section of this thesis is focused on GA. In particular, it is firstly aimed at examining the differences among five most representative GA protocols in order to assess the state of the art with respect to the inter-protocol variability. The design of a new protocol is then proposed and presented with the aim of achieving gait analysis on CP children by means of IMMS. The protocol, named ‘Outwalk’, contains original and innovative solutions oriented at obtaining joint kinematic with calibration procedures extremely comfortable for the patients. The results of a first in-vivo validation of Outwalk on healthy subjects are then provided. In particular, this study was carried out by comparing Outwalk used in combination with an IMMS with respect to a reference protocol and an optoelectronic system. In order to set a more accurate and precise comparison of the systems and the protocols, ad hoc methods were designed and an original formulation of the statistical parameter coefficient of multiple correlation was developed and effectively applied. On the basis of the experimental design proposed for the validation on healthy subjects, a first assessment of Outwalk, together with an IMMS, was also carried out on CP children. The third section of this thesis is dedicated to the treatment of walking in CP children. Commonly prescribed treatments in addressing gait abnormalities in CP children include physical therapy, surgery (orthopedic and rhizotomy), and orthoses. The orthotic approach is conservative, being reversible, and widespread in many therapeutic regimes. Orthoses are used to improve the gait of children with CP, by preventing deformities, controlling joint position, and offering an effective lever for the ankle joint. Orthoses are prescribed for the additional aims of increasing walking speed, improving stability, preventing stumbling, and decreasing muscular fatigue. The ankle-foot orthosis (AFO), with a rigid ankle, are primarily designed to prevent equinus and other foot deformities with a positive effect also on more proximal joints. However, AFOs prevent the natural excursion of the tibio-tarsic joint during the second rocker, hence hampering the natural leaning progression of the whole body under the effect of the inertia (6). A new modular (submalleolar) astragalus-calcanear orthosis, named OMAC, has recently been proposed with the intention of substituting the prescription of AFOs in those CP children exhibiting a flat and valgus-pronated foot. The aim of this section is thus to present the mechanical and technical features of the OMAC by means of an accurate description of the device. In particular, the integral document of the deposited Italian patent, is provided. A preliminary validation of OMAC with respect to AFO is also reported as resulted from an experimental campaign on diplegic CP children, during a three month period, aimed at quantitatively assessing the benefit provided by the two orthoses on walking and at qualitatively evaluating the changes in the quality of life and motor abilities. As already stated, CP is universally considered as a persistent but not unchangeable disorder of posture and movement. Conversely to this definition, some clinicians (4) have recently pointed out that movement disorders may be primarily caused by the presence of perceptive disorders, where perception is not merely the acquisition of sensory information, but an active process aimed at guiding the execution of movements through the integration of sensory information properly representing the state of one’s body and of the environment. Children with perceptive impairments show an overall fear of moving and the onset of strongly unnatural walking schemes directly caused by the presence of perceptive system disorders. The fourth section of the thesis thus deals with accurately defining the perceptive impairment exhibited by diplegic CP children. A detailed description of the clinical signs revealing the presence of the perceptive impairment, and a classification scheme of the clinical aspects of perceptual disorders is provided. In the end, a functional reaching test is proposed as an instrumental test able to disclosure the perceptive impairment. References 1. Prevalence and characteristics of children with cerebral palsy in Europe. Dev Med Child Neurol. 2002 Set;44(9):633-640. 2. Bax M, Goldstein M, Rosenbaum P, Leviton A, Paneth N, Dan B, et al. Proposed definition and classification of cerebral palsy, April 2005. Dev Med Child Neurol. 2005 Ago;47(8):571-576. 3. Ingram TT. A study of cerebral palsy in the childhood population of Edinburgh. Arch. Dis. Child. 1955 Apr;30(150):85-98. 4. Ferrari A, Cioni G. The spastic forms of cerebral palsy : a guide to the assessment of adaptive functions. Milan: Springer; 2009. 5. Olney SJ, Wright MJ. Cerebral Palsy. Campbell S et al. Physical Therapy for Children. 2nd Ed. Philadelphia: Saunders. 2000;:533-570. 6. Desloovere K, Molenaers G, Van Gestel L, Huenaerts C, Van Campenhout A, Callewaert B, et al. How can push-off be preserved during use of an ankle foot orthosis in children with hemiplegia? A prospective controlled study. Gait Posture. 2006 Ott;24(2):142-151.
Resumo:
The ability of integrating into a unified percept sensory inputs deriving from different sensory modalities, but related to the same external event, is called multisensory integration and might represent an efficient mechanism of sensory compensation when a sensory modality is damaged by a cortical lesion. This hypothesis has been discussed in the present dissertation. Experiment 1 explored the role of superior colliculus (SC) in multisensory integration, testing patients with collicular lesions, patients with subcortical lesions not involving the SC and healthy control subjects in a multisensory task. The results revealed that patients with collicular lesions, paralleling the evidence of animal studies, demonstrated a loss of multisensory enhancement, in contrast with control subjects, providing the first lesional evidence in humans of the essential role of SC in mediating audio-visual integration. Experiment 2 investigated the role of cortex in mediating multisensory integrative effects, inducing virtual lesions by inhibitory theta-burst stimulation on temporo-parietal cortex, occipital cortex and posterior parietal cortex, demonstrating that only temporo-parietal cortex was causally involved in modulating the integration of audio-visual stimuli at the same spatial location. Given the involvement of the retino-colliculo-extrastriate pathway in mediating audio-visual integration, the functional sparing of this circuit in hemianopic patients is extremely relevant in the perspective of a multisensory-based approach to the recovery of unisensory defects. Experiment 3 demonstrated the spared functional activity of this circuit in a group of hemianopic patients, revealing the presence of implicit recognition of the fearful content of unseen visual stimuli (i.e. affective blindsight), an ability mediated by the retino-colliculo-extrastriate pathway and its connections with amygdala. Finally, Experiment 4 provided evidence that a systematic audio-visual stimulation is effective in inducing long-lasting clinical improvements in patients with visual field defect and revealed that the activity of the spared retino-colliculo-extrastriate pathway is responsible of the observed clinical amelioration, as suggested by the greater improvement observed in patients with cortical lesions limited to the occipital cortex, compared to patients with lesions extending to other cortical areas, found in tasks high demanding in terms of spatial orienting. Overall, the present results indicated that multisensory integration is mediated by the retino-colliculo-extrastriate pathway and that a systematic audio-visual stimulation, activating this spared neural circuit, is able to affect orientation towards the blind field in hemianopic patients and, therefore, might constitute an effective and innovative approach for the rehabilitation of unisensory visual impairments.
Resumo:
Numerosi studi mostrano che gli intervalli temporali sono rappresentati attraverso un codice spaziale che si estende da sinistra verso destra, dove gli intervalli brevi sono rappresentati a sinistra rispetto a quelli lunghi. Inoltre tale disposizione spaziale del tempo può essere influenzata dalla manipolazione dell’attenzione-spaziale. La presente tesi si inserisce nel dibattito attuale sulla relazione tra rappresentazione spaziale del tempo e attenzione-spaziale attraverso l’uso di una tecnica che modula l’attenzione-spaziale, ovvero, l’Adattamento Prismatico (AP). La prima parte è dedicata ai meccanismi sottostanti tale relazione. Abbiamo mostrato che spostando l’attenzione-spaziale con AP, verso un lato dello spazio, si ottiene una distorsione della rappresentazione di intervalli temporali, in accordo con il lato dello spostamento attenzionale. Questo avviene sia con stimoli visivi, sia con stimoli uditivi, nonostante la modalità uditiva non sia direttamente coinvolta nella procedura visuo-motoria di AP. Questo risultato ci ha suggerito che il codice spaziale utilizzato per rappresentare il tempo, è un meccanismo centrale che viene influenzato ad alti livelli della cognizione spaziale. La tesi prosegue con l’indagine delle aree corticali che mediano l’interazione spazio-tempo, attraverso metodi neuropsicologici, neurofisiologici e di neuroimmagine. In particolare abbiamo evidenziato che, le aree localizzate nell’emisfero destro, sono cruciali per l’elaborazione del tempo, mentre le aree localizzate nell’emisfero sinistro sono cruciali ai fini della procedura di AP e affinché AP abbia effetto sugli intervalli temporali. Infine, la tesi, è dedicata allo studio dei disturbi della rappresentazione spaziale del tempo. I risultati ci indicano che un deficit di attenzione-spaziale, dopo danno emisferico destro, provoca un deficit di rappresentazione spaziale del tempo, che si riflette negativamente sulla vita quotidiana dei pazienti. Particolarmente interessanti sono i risultati ottenuti mediante AP. Un trattamento con AP, efficace nel ridurre il deficit di attenzione-spaziale, riduce anche il deficit di rappresentazione spaziale del tempo, migliorando la qualità di vita dei pazienti.
Resumo:
The advances that have been characterizing spatial econometrics in recent years are mostly theoretical and have not found an extensive empirical application yet. In this work we aim at supplying a review of the main tools of spatial econometrics and to show an empirical application for one of the most recently introduced estimators. Despite the numerous alternatives that the econometric theory provides for the treatment of spatial (and spatiotemporal) data, empirical analyses are still limited by the lack of availability of the correspondent routines in statistical and econometric software. Spatiotemporal modeling represents one of the most recent developments in spatial econometric theory and the finite sample properties of the estimators that have been proposed are currently being tested in the literature. We provide a comparison between some estimators (a quasi-maximum likelihood, QML, estimator and some GMM-type estimators) for a fixed effects dynamic panel data model under certain conditions, by means of a Monte Carlo simulation analysis. We focus on different settings, which are characterized either by fully stable or quasi-unit root series. We also investigate the extent of the bias that is caused by a non-spatial estimation of a model when the data are characterized by different degrees of spatial dependence. Finally, we provide an empirical application of a QML estimator for a time-space dynamic model which includes a temporal, a spatial and a spatiotemporal lag of the dependent variable. This is done by choosing a relevant and prolific field of analysis, in which spatial econometrics has only found limited space so far, in order to explore the value-added of considering the spatial dimension of the data. In particular, we study the determinants of cropland value in Midwestern U.S.A. in the years 1971-2009, by taking the present value model (PVM) as the theoretical framework of analysis.
Resumo:
The "SNARC effect" refers to the finding that people respond faster to small numbers with the left hand and to large numbers with the right hand. This effect is often explained by hypothesizing that numbers are represented from left to right in ascending order (Mental Number Line). However, the SNARC effect may not depend on quantitative information, but on other factors such as the order in which numbers are often represented from left to right in our culture. Four experiments were performed to test this hypothesis. In the first experiment, the concept of spatial association was extended to nonnumeric mathematical symbols: the minus and plus symbols. These symbols were presented as fixation points in a spatial compatibility paradigm. The results demonstrated an opposite influence of the two symbols on the target stimulus: the minus symbol tends to favor the target presented on the left, while the plus symbol the target presented on the right, demonstrating that spatial association can emerge in the absence of a numerical context. In the last three experiments, the relationship between quantity and order was evaluated using normal numbers and mirror numbers. Although mirror numbers denote quantity, they are not encountered in a left-to-right spatial organization. In Experiments 1 and 2, participants performed a magnitude classification task with mirror and normal numbers presented together (Experiment 1) or separately (Experiment 2). In Experiment 3, participants performed a new task in which quantity information processing was not required: the mirror judgment task. The results show that participants access the quantity of both normal and mirror numbers, but only the normal numbers are spatially organized from left to right. In addition, the physical similarity between the numbers, used as a predictor variable in the last three experiments, showed that the physical characteristics of numbers influenced participants' reaction times.
Resumo:
Investigating stock identity of marine species in a multidisciplinary holistic approach can reveal patterns of complex spatial population structure and signatures of potential local adaptation. The population structure of common sole (Solea solea) in the Mediterranean Sea was delineated using genomic and otolith data, including single nucleotide polymorphisms (SNPs) markers and otolith data. SNPs were correlated with environmental and spatial variables to evaluate the impact of these features on the actual genetic population structure. Integrated holistic approach was applied to combine the tracers with different spatio-temporal scales. SNPs data was also used to illustrate the population structure of European hake (Merluccius merluccius) within the Alboran Sea, extending into the neighboring Mediterranean Sea and Atlantic Ocean. The aim was to identify patterns of neutral and potential adaptive genetic variation by applying seascape genomic framework. Results from both genetic and otolith data suggested significant divergence among putative populations of common sole, confirming a clear separation between Western, Adriatic Sea and Eastern Mediterranean Sea. Evidence of fine-scale population structure in the Western Mediterranean Sea was observed at outlier loci level and in the Adriatic. Our study not only indicates that separation among Mediterranean sole population is led primarily by neutral processes, but it also suggests the presence of local adaptation influenced by environmental and spatial factors. The holistic approach by considering the spatio-temporal scales of variation confirmed that the same pattern of separation between these geographical sites is currently occurring and has occurred for many generations. Results showed the occurrence of population structure in Merluccius merluccius by detecting westward–eastward differentiation among populations and distinct subgroups at a fine geographical scale using outlier SNPs. These results enhance the knowledge of the population structure of commercially relevant species to support the application of spatial stock assessment models, including a redefinition of fishery management units.